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Osteosarcoma is the most common primary malignant bone tumor 
in childhood and adolescence (1) and has a propensity for local 
invasion and early lung metastasis. Currently, 5-year survival from 
osteosarcoma remains at approximately 65%–70% for localized 
disease but at only 20% for metastatic disease, with only modest 
therapeutic improvement over the past 15 years (2,3) because 
current therapies often result in chemoresistance. It is urgent to 
further understand the mechanism of tumorigenesis in osteosarcoma 
to identify new therapeutic targets (4).

Glycogen synthase kinase-3b (GSK-3b) is a serine/threonine 
protein kinase that plays key roles in multiple pathways, and its 
dysregulation is implicated in many disorders, such as neurodegen-
erative diseases and cancers (5,6). However, the function of GSK-3b 

in cancer can differ depending on cell type. One of the most well-
known substrates of GSK-3b, b-catenin, is an important regulator 
of the Wnt–b-catenin signaling pathway. Phosphorylation of 
b-catenin by GSK-3b results in ubiquitin-mediated degradation of 
b-catenin, reducing translocation of b-catenin into the nucleus. 
Consequently, the transcription of many proto-oncogenes, such as 
c-myc and cyclin D1, is dramatically suppressed. Hence, classically, 
GSK-3b is recognized as a tumor suppressor that is frequently 
inactivated in a variety of tumors (7). However, emerging evidence 
has shown that GSK-3b may actually promote the development of 
several cancer types, such as mixed lineage leukemia (8–10), glioma 
(11), and oral cancer (7). Therefore, the biological function of 
GSK-3b requires assessment in each type of tumor.
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	Background	 Glycogen synthase kinase-3b (GSK-3b), a serine/threonine protein kinase, may function as a tumor suppressor 
or an oncogene, depending on the tumor type. We sought to determine the biological function of GSK-3b in 
osteosarcoma, a rare pediatric cancer for which the identification of new therapeutic targets is urgent.

	 Methods	 We used cell viability assays, colony formation assays, and apoptosis assays to analyze the effects of altered GSK-3b 
expression in U2OS, MG63, SAOS2, U2OS/MTX300, and ZOS osteosarcoma cell lines. Nude mice (n = 5–8 mice 
per group) were injected with U2OS/MTX300, and ZOS cells to assess the role of GSK-3b in osteosarcoma growth 
in vivo and to evaluate the effects of inhibitors and/or anticancer drugs on tumor growth. We used an antibody 
array, polymerase chain reaction, western blotting, and a luciferase reporter assay to establish the effect of GSK-3b 
inhibition on the nuclear factor-kB (NF-kB) pathway. Immunochemistry was performed on primary tumor specimens 
from osteosarcoma patients (n = 74) to determine the relationship of GSK-3b activity with overall survival.

	 Results	 Osteosarcoma cells with low levels of inactive p-Ser9-GSK-3b formed colonies in vitro and tumors in vivo more 
readily than cells with higher levels and cells in which GSK-3b had been silenced formed fewer colonies and 
smaller tumors than parental cells. Silencing or pharmacological inhibition of GSK-3b resulted in apoptosis of 
osteosarcoma cells. Inhibition of GSK-3b resulted in inhibition of the NF-kB pathway and reduction of 
NF-kB-mediated transcription. Combination treatments with GSK-3b inhibitors, NF-kB inhibitors, and chemotherapy 
drugs increased the effectiveness of chemotherapy drugs in vitro and in vivo. Patients whose osteosarcoma 
specimens had hyperactive GSK-3b, and nuclear NF-kB had a shorter median overall survival time (49.2 months) 
compared with patients whose tumors had inactive GSK-3b and NF-kB (109.2 months).

	Conclusion	 GSK-3b activity may promote osteosarcoma tumor growth, and therapeutic targeting of the GSK-3b and/or 
NF-kB pathways may be an effective way to enhance the therapeutic activity of anticancer drugs against 
osteosarcoma.
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The nuclear factor-kB (NF-kB) transcription factor is activated 
by a variety of cellular and developmental signals (12–15). 
Deregulated activation of NF-kB has been causally linked to the 
development of several human pathologies, including cancers 
(12–15). In fact, hyperactivation of NF-kB signaling contributes to 
chemoresistance in tumors (16) and tumorigenicity (17), and the 
NF-kB pathway has been reported to be involved in proliferation 
and differentiation of osteosarcoma cells (18–20). However, the 
molecular mechanism of NF-kB in chemoresistance of osteosarcoma 
still remains poorly understood.

To better understand the function of GSK-3b in osteosarcoma, 
here, we sought to determine whether GSK-3b can activate the 
NF-kB pathway to promote tumorigenicity and whether targeting 
of the GSK-3b and/or NF-kB pathways might represent a promising 
strategy to enhance the therapeutic activity of anticancer drugs against 
osteosarcoma. We first performed cell viability and apoptosis assays 
to assess the association of GSK-3b with osteosarcoma cell survival 
and then used mouse models to investigate the role of GSK-3b in 

tumorigenicity in vivo. Finally, tissue samples were subjected to 
immunohistochemistry to evaluate whether GSK-3b activation is 
associated with clinical outcomes of patients with osteosarcoma.

Materials and Methods
Cell Lines
Three human osteosarcoma cell lines (U2OS, MG63, SAOS2) and 
one osteoblast cell line (hFOB1.19) were cultured according to the 
instructions from American Type Culture Collection (ATCC). 
U2OS/MTX300 cells, a methotrexate-resistant derivative of the 
U2OS human osteosarcoma cell line, and ZOS and ZOS-M, 
syngeneic human osteosarcoma cell lines derived from a primary 
tumor and metastasis, respectively, from the same patient, were 
described previously (8,21). All of the cell lines and the primary 
cell cultures were grown in Dulbecco’s modified Eagle medium 
(Invitrogen, Grand Island, NY) supplemented with 10% fetal 
bovine serum (Invitrogen) at 37°C and 5% CO2. U2OS, MG63, 
SAOS2, and U2OS/MTX300 cells were gifts from Dr M. Serra 
(Istituti Ortopedici Rizzoli, Bologna, Italy). The osteoblast cell 
line (hFOB1.19) was obtained from the Cell Bank of the Chinese 
Academy of Sciences (Shanghai, China).

Plasmids
Plasmids encoding the human IkBa mutant (IkBa-mut), in which 
two serine residues at both 32 and 36 were changed into alanine 
residues, and p65 were gifts from Dr Jiong Deng (Shanghai Jiaotong 
University, Shanghai, China) (22). V5-tagged kinase-inactive (KD) 
and constitutively active (CA) GSK-3b were previously described 
(23). The GSK-3b–short hairpin RNA (shRNA) plasmid was 
obtained from GenePharma (Shanghai, China).

Antibodies and Reagents
Antibodies against GSK-3b (rabbit monoclonal, 1:1000), 
phosphorylated-Ser9-GSK-3b (rabbit monoclonal, 1:1000), 
phosphorylated-Ser32-IkBa (rabbit monoclonal, 1:1000), xIAP 
(rabbit monoclonal, 1:1000), cIAP-1 (rabbit monoclonal, 1:1000), 
and survivin (mouse monoclonal, 1:1000) were obtained from Cell 
Signaling Technology (Danvers, MA). Antibodies against GSK-
3a/b (mouse monoclonal, 1:500), caspase-3 (mouse monoclonal, 
1:500), IkBa (rabbit monoclonal, 1:250), p65 (mouse monoclonal, 
1:500), and bcl-2 (mouse monoclonal, 1:250) were from Santa 
Cruz Biotechnology (Santa Cruz, CA). Lithium chloride (LiCl, 1M 
stock in water), SB216763 (10 mM stock in DMSO), doxorubicin 
(also known as adriamycin, ADM), methotrexate (MTX), cisplatin 
(DDP), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium 
bromide (MTT), and the NF-kB inhibitors, pyrrolidine dithiocar-
bamate (PDTC, 1 mM stock in water), parthenolide (PARTH, 200 
µM stock in DMSO), and Bay 11-7085 (BAY, 250 µM stock in 
DMSO), were purchased from Sigma (St Louis, MO). The specificity 
of PDTC, PARTH, and BAY for NF-kB was tested and confirmed 
previously (24–29).

Transient and Stable Transfections
Small interfering RNA (siRNA) against GSK-3b (sense, 5′-CUCAA
GAACUGUCAAGUAAdTdT-3′; antisense, 5′-UUACUUGACA
GUUCUUGAGdTdT-3’), IkBa (sense, 5′-CUCCGAGACUUUCG

CONTEXT AND CAVEATS

Prior knowledge
Glycogen synthase kinase-3b (GSK-3b), an important serine-
threonine protein kinase, has been reported to act as a tumor 
suppressor or an oncogene in various tumors, but its role in oste-
osarcoma was unknown.

Study design
Osteosarcoma cell lines that expressed various levels of GSK-3b 
were compared in terms of their viability, apoptosis, ability to form 
colonies in vitro, and ability to form tumors in nude mice. Mice 
carrying U2OS/MTX300 and ZOS cell xenografts were used to test 
the therapeutic effects of GSK-3b inhibitors with or without other 
cancer drugs. An antibody array and other techniques were used to 
study the effects of GSK-3b inhibition. Immunohistochemistry on 
clinical ostesosarcoma specimens was used to examine whether 
GSK-3b activation was associated with overall survival.

Contribution
The ability of osteosarcoma cells to form colonies and tumors 
appeared to be directly related to their levels of GSK-3b activity. 
Inhibition of GSK-3b activity resulted in inhibition of the nuclear 
factor-kB (NF-kB) pathway and in apoptosis of osteosarcoma cells. 
Combinations with GSK-3b inhibitors and/or NF-kB inhibitors 
increased the effectiveness of chemotherapy drugs vs osteosar-
coma tumors in mouse models. Patients with osteosarcomas that 
expressed more inactive GSK-3b and NF-kB lived longer than 
patients whose tumors appeared to express more active forms.

Implications
GSK-3b activity appears to promote the growth of osteosarcomas 
via the NF-kB pathway. Therapies that target these pathways may 
be useful in the treatment of osteosarcoma.

Limitations
GSK-3b activity was not directly measured, and the contribution of 
GSK-3a was not addressed. Therapeutic treatment of osteosar-
coma cells in vitro or in mouse models may not be representative 
of the potential effects in human patients.
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AGGAAdTdT-3’; antisense, 5′-UUCCUCGAAAGUCUCGGAG
dTdT-3’), and p65 (sense, 5’-CCAUCAACUAUGAUGAGUU 
dTdT-3’; antisense 5’-AACUCAUCAUAGUUGAUGGTdGd-3’) 
were synthesized by RiboBio (Guangzhou, China). Procedures 
for transient and stable transfection were as previously described 
(30,31). Briefly, targeting siRNAs at a final concentration of 100 
nM were transfected into U2OS cells at 30%–50% confluence 
in six-well plates using Lipofectamine 2000 (Invitrogen). Cells 
were harvested with trypsin 72 hours after transfection with 
siRNA.

Colony Formation and Tumorigenicity Assays
Colony formation assays were performed as described (31). Briefly, 
osteosarcoma cells were plated in triplicate at 100 cells per well in 
six-well plates. After culture in Dulbecco’s modified Eagle medium 
supplemented with 10% fetal bovine serum for 14 days, cell clones 
were washed three times with phosphate-buffered saline (PBS), 
fixed in methanol for 10 minutes, and dyed with crystal violet 
for 10 minutes at room temperature. Afterward, the dye was 
washed off and colonies that contained more than 50 cells were 
counted.

For tumorigenicity assays, osteosarcoma cell lines U2OS, SAOS2, 
MG63, ZOS, ZOS-M, or U2OS/MTX300, or U2OS cells that were 
stably transfected with empty vector, KD GSK-3b, or CA GSK-3b 
were injected near the axillary fossa subcutaneously (1 × 106 cells in 
200 µL of PBS per Balb/c nude mouse, 6- to 8-weeks old, female; 
five mice per group), and the mice were monitored for 8 weeks. 
For stable cell lines in which GSK-3b expression was reduced 
using siRNA, the tumor size was measured with a sliding caliper 
every 3 days for 25 days, and the tumor volume was calculated 
using the formula V = 1/2 (width2 × length). When length of the 
tumor was more than 1.5 cm, the experiment was stopped and the 
mice were killed by cervical dislocation, according to the protocol 
developed by the Guidance of Institutional Animal Care and Use 
Committee at Sun Yat-Sen University.

Cell Viability Assay
Osteosarcoma cell lines U2OS, U2OS/MTX300, SAOS2, MG63, 
ZOS, and ZOS-M were seeded in 96-well plates at a density of 
3000 cells per well. They were treated with different concentrations 
of LiCl (1–20 mM), SB216763 (1–40 µM), inhibitor IX (0.5–8 µM), 
chemotherapy drugs (ADM, 4 ng/mL; MTX, 5 ng/mL; DDP, 
200 ng/mL), and/or NF-kB inhibitors (PDTC, 10 µM; PARTH, 
2 µM; BAY, 2.5 µM) for the indicated number of hours, and cell 
viability was measured by MTT assay as described (21).

Caspase-3 Activity Assay
To assess the cell viability of osteosarcoma cells after the indicated 
treatments, caspase-3 activity assays were performed according to 
the manufacturer’s instructions (Calbiochem, Billerica, MA). 
Briefly, after cellular protein was extracted from treated osteosar-
coma cells, protein concentrations were determined using the 
Bradford protein assay. Then, 10 µL of caspase-3 substrate was 
added to 30 µg of extracted cellular protein, and after incubation 
for 2 hours, caspase-3 activity was measured at 405 nm with a 
microtiter plate reader as recommended in the manufacturer’s 
instructions.

Dual-Luciferase Reporter Assay
After seeding 4 × 104 U2OS cells per well in 24-well plates, the 
cells were cotransfected with 200 ng NF-kB p65 luciferase 
reporter and 5 ng pRL-TK Renilla luciferase construct (Promega, 
Madison, WI) per well using Lipofectamine 2000 (Invitrogen). 
After 24 hours, the cells were treated with LiCl (20 mM) or siRNA 
(100 nM). Then, the cells were analyzed after an additional 48 
hours according to the Dual-Luciferase Assay System protocol 
(Promega). For stable transfection, U2OS cells expressing consti-
tutively active GSK-3b or empty vector (CA3, CA9, vec) or 
U2OS/MTX300 cells expressing kinase-inactive GSK-3b (SH4, 
SH35) were cotransfected with NF-kB p65 luciferase reporter 
and Renilla luciferase construct for 48 hours and then the cells 
were analyzed as described above.

Apoptosis Antibody Array
To study the mechanism of apoptosis induced by GSK-3b inhibi-
tion, the Proteome Profiler Human Apoptosis Array Kit (R&D 
Systems, Minneapolis, MN) was used according to manufacturer’s 
instructions. Briefly, after blocking the arrays with array buffer, 
cell lysates were added and incubated overnight at 4°C. After 
extensive washes, the array was incubated with the antibody cocktail 
(antibodies to Bad, TRAILR1/DR4, PON2, Bax, TRAILR2/DR5, 
p21/CIP1/CDNK1A, Bcl-2, FADD, p27/Kip1, Bcl-x, Fas/
TNFSF6, phospho-p53 [S15], pro-caspase-3, HIF-1a, phospho-p53 
[S46], cleaved caspase-3, HO-1/HMOX1/HSP32, phospho-p53 
[S392], catalase, HO-2/HMOX2, phospho-Rad17 [S635], cIAP-
1, HSP27, SMAC/Diablo, cIAP-2, HSP60, survivin, claspin, 
HSP70, TNFRI/TNFRSF1A, clusterin, HTRA2/Omi, XIAP, 
cytochrome c, and livin) for 1 hour, washed with 1× wash buffer for 
10 minutes and then incubated with streptavidin-HRP diluted as 
1:5000 in 1× array buffer 2/3 for 30 minutes, followed by exposure 
to x-ray film.

Reverse Transcription-Polymerase Chain Reaction  
(RT-PCR)
Total cellular RNA was extracted from U2OS cells after siRNA 
transfection or LiCl treatment using the RNeasy Mini Kit (Qiagen, 
Hilden, Germany), and the first strand cDNA was synthesized by 
First Strand cDNA Synthesis Kit (Fermentas, Glen Burnie, MD), 
following the manufacturer’s protocol. Primers included were the 
following: GSK-3b forward, 5′- ATTTCCAGGGGATAGTGG
TGT-3′; GSK-3b reverse, 5′-GGTCGGAAGACCTTAGTC
CAAG-3′; cIAP-1 forward, 5′- TTCCCAGGTCCCTCGTATCA
AAA-3′; cIAP-1 reverse, 5′- TGGAGAAAGGCTGGAGTAAG
AACC-3′; XIAP forward, 5′- TGGCACGAGCAGGGTTTC
TTTA-3′; XIAP reverse, 5′- TGGGGTTAGGTGAGCATAGTC
TGG-3′; Bcl2 forward. 5′ ATGTGTGTGGAGAGCGTCAACC-3′; 
Bcl2 reverse, 5′- TGAGCAGAGTCTTCAGAGACAGCC-3′; sur-
vivin forward, 5′- GCCTGGCAGCCCTTTCTCAA-3′; survivin 
reverse, 5′- CTCGATGGCACGGCGCACTTTCT-3′; IkBa 
forward, 5′- CTCCGAGACTTTCGAGGAAATAC-3′; IkBa 
reverse, 5′- GCCATTGTAGTTGGTAGCCTTCA-3′; p65 
forward, 5′- AGCTCAAGATCTGCCGAGTG-3′; p65 reverse, 
5′- ACATCAGCTTGCGAAAAGGA-3′; b-actin forward, 5′- GT
GGGGCGCCCCAGGCACCA-3′; b-actin reverse, 5′- CTCCT
TAATGTCACGCACGATTTC-3′.
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PCR was programmed as follows: 94°C for 2 minutes, 30 cycles 
of 94°C for 30 seconds, 54°C for 30 seconds, 72°C for 30 seconds, 
72°C for 10 minutes, hold at 4°C. RT-PCR products were  
analyzed via 2.0% agarose gel electrophoresis and stained with 
ethidium bromide for visualization using ultraviolet light.

Western Blotting Analysis
Protein from U2OS cells treated with LiCl or transfected with 
siRNA or plasmids was extracted for western blotting as described 
previously (30,31). Sixty micrograms of total protein from each 
sample was loaded, resolved by electrophoresis in 8%–12% sodium 
dodecyl sulfate–polyacrylamide gradient gels, and transferred to 
nitrocellulose membranes. The blots were then incubated with 
various antibodies as described above. Pixel density was quantified 
with Quantity One (Bio-Rad, Hercules, CA).

Patients and Specimens
Patient studies were approved by the Institutional Review Board 
of Sun Yat-Sen University, and written informed consent was 
obtained from the patients or their parents before sample collection. 
In this study, osteosarcoma tissue samples were obtained from 
74 patients, which included 25 primary biopsy samples and 49 
samples from surgical resections. Biopsy samples were immediately 
fixed for 12–24 hours with 10% formaldehyde when they were 
obtained, and they were then paraffin embedded. Surgical resections 
were sent from the operating room to the pathology department 
within 1–2 hours after being excised. Afterward, the specimens 
were examined, photographed, and ultimately fixed with 10% 
formaldehyde within 3 hours after resection. The samples from all 
case patients were carefully examined following hematoxylin and 
eosin staining to confirm the diagnosis of osteosarcoma. These 
patients received standard neoadjuvant chemotherapy followed 
by resection of the tumor and postoperative chemotherapy at 
the Musculoskeletal Tumor Center of Sun Yat-Sen University 
(Guangzhou, People’s Republic of China). Chemotherapy included 
methotrexate (MTX, 8–12 g/m2), doxorubicin (ADM, 60–80 mg/m2), 
cisplatin (DDP, 100–120 mg/m2), or isofosfamide (IFO, 12.5 g/m2). 
Of the 74 patients with osteosarcoma, 13 lacked follow-up records 
and the remaining 61 had a median follow-up of 4 years (ranging 
from 3 to 12.8 years); these data were used in survival analyses. 
Clinicopathologic features of the 61 patients are shown in 
Supplementary Table 1 (available online).

Immunohistochemical Staining
Immunohistochemical staining was performed, as described 
previously (31), on 3-µm sections from paraffin-embedded tissues 
of 74 patients with osteosarcoma. The primary antibodies against 
phosphorylated-GSK-3b (Serine 9) and p65 were diluted 1:50 and 
1:100, respectively, and tissue sections were incubated with these 
antibodies at 4°C overnight in a humidified container. After 
washing with PBS three times, the tissue slides were treated with a 
non-biotin horseradish peroxidase detection system according to 
manufacturer’s instructions (Dako, Carpinteria, CA). The results 
of immunohistochemical staining were evaluated by two independent 
pathologists, Dr A.-J. Han and Dr D.-W. Liu, who specialize  
in osteosarcoma. Samples were was classified as positive for 
phosphorylated-GSK-3b expression when there were more than 

10% positive-staining cells and classified as negative otherwise 
(23). To evaluate nuclear NF-kB p65 localization, we searched for 
hot spots with nuclear staining and counted a total number of  
500 nuclei within these hot spots at ×400 magnification (32,33). 
The sample was classified as positive for nuclear NF-kB p65 when 
more than 10% of the tumor cells on the slide showed nuclear 
staining overall. In the study, certain stained breast cancer tissues 
and prostate cancer tissues served as the positive controls for 
phosphorylated-GSK-3b and nuclear p65, respectively, whereas 
osteosarcoma specimens that were stained with the same con-
centration of rabbit IgG, without GSK-3b or NF-kB p65 anti-
bodies, were used as negative controls.

Antitumor Assays Using Mouse Models
All in vivo experiments were approved by the Institutional Review 
Board of Sun Yat-Sen University. Athymic nude (nu/nu) mice, 
6–8 weeks of age, were purchased from SLAC Animal Center 
(Shanghai, China). U2OS/MTX300 and ZOS cells (1 × 106 in 200 µL 
PBS) were injected subcutaneously near the scapula of the nude 
mice. One week after the cells were injected, the mice were randomly 
separated into groups that each contained six mice. The first two 
groups of mice were treated with LiCl (340 mg/kg) and/or PDTC 
(200 mg/kg) by intraperitoneal injection every 2 days. The remaining 
two groups of mice were treated with ADM (6 mg/kg) by intraperito-
neal injection once per week and lithium carbonate (250 mg/kg) 
intragastrically every day. Tumors were measured with a caliper every 
2 days, and the tumor volume was calculated using the formula V =1/2 
(width2 × length). Body weights were also recorded. Mice were 
killed by cervical dislocation when the tumor diameters reached 
1.5 cm, following the terms of the original protocol.

For orthotopic model of osteosarcoma, we used ZOS osteosar-
coma cells, which had been derived from a primary tumor. The 
detailed procedure was described previously (34,35). Specifically, 
the mice were anesthetized by isoflurane, and their right legs were 
disinfected using 70% ethanol. A 30-gauge needle was carefully 
inserted into the proximal tibia through the cortex of the anterior 
tuberosity. Then, we confirmed that the needle was in the medullary 
cavity of proximal tibia by moving the needle forward and backward. 
Finally, 20 µL of the ZOS cell suspension was slowly injected. The 
syringe was flushed between injections. Eighteen days after injection 
of the cells, the mice were randomly separated into treatment groups 
(n = 5). Mice were treated with ADM (6 mg/kg) by intraperitoneal 
injection once per week and lithium carbonate (250 mg/kg) intra-
gastrically every day. The length and width of tumors (D1, D2) were 
measured with a caliper every 2 days, and the tumor volume was 
calculated using the formula V = 4/3 p[1/4(D1+D2)]2, as described 
previously (34). Mice were killed by cervical dislocation when the 
tumor volume reached 500 mm3 according to protocol filed with 
the Guidance of Institutional Animal Care and Use Committee of 
Sun Yat-Sen University.

Statistical Analysis
An unpaired Student’s t test or analysis of variance with Bonferroni 
post hoc test (SPSS software 13.0; SPSS, Chicago, IL) was used for 
statistical comparison. The Kaplan-Meier method was used to esti-
mate the overall survival, and the log-rank test was used to evaluate 
the differences between survival curves. Statistical tests and P values 
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were two-sided. P values that were less than .05 were considered to 
connote statistical significance.

Results
Association of Active GSK-3b With Clonogenicity and 
Tumorigenicity of Osteosarcoma Cell Lines
To determine the role of GSK-3b in osteosarcoma, we first 
examined the levels of GSK-3b that were phosphorylated at Serine 
9, and thus known to be inactive (36), in five osteosarcoma cell 
lines and one normal osteoblast cell line. Normal osteoblast 
hFOB1.19 cells contained the highest level of p-Ser9-GSK-3b, 
whereas U2OS and SAOS osteosarcoma cells contained moderate 
levels of p-Ser9-GSK-3b (Figure 1, A). By contrast, MG63, ZOS, 
and ZOS-M osteosarcoma cells contained the lowest levels of 
p-Ser9-GSK-3b. However, total GSK-3b levels were comparable 
among these cell lines.

As expected based on previous findings (36), inactivation of 
GSK-3b indicated by accumulation of p-Ser9-GSK-3b in these 
osteosarcoma cell lines was associated with increased levels of  
b-catenin protein, which is an endogenous substrate of GSK-3b 
and thus expected to be expressed at lower levels if GSK-3b is 
active (Figure 1, B). p-Ser9-GSK-3b levels were also inversely 
related to the tumorigenicity of osteosarcoma cell lines as deter-
mined by colony formation in vitro. Cells with the lowest levels of 
p-Ser9-GSK-3b (ie, MG63, ZOS, and ZOS-M) formed more 
colonies than the cells with moderate levels of p-Ser9-GSK-3b 
(ie, U2OS and SAOS2); for example, at 14 days, the mean number 

of colonies from ZOS cells = 47, from U2OS cells = 15, difference = 
32, 95% confidence interval (CI) = 11 to 52, P = .0017 (Figure 1, C).

To determine whether there was an association between GSK-
3b activation and osteosarcoma tumor growth in vivo, each cell 
line was subcutaneously injected into five nude mice and tumor 
formation was followed for 5 weeks. No tumors were detected in 
mice injected subcutaneously with either U2OS or SAOS2 cells 
(Figure 1, D). By contrast, ZOS, ZOS-M, and MG63 cells were 
tumorigenic (at 56 days, all five mice had tumors from ZOS cells, 
all five mice had tumors from ZOS-M cells, and all five mice had 
tumors from MG63 cells). We also tested U2OS/MTX300 cells, a 
methotrexate-resistant variant derived from U2OS cells (21). 
U2OS/MTX300 cells formed more colonies than U2OS cells in 
vitro (at 14 days, the mean number of colonies from U2OS/
MTX300 cells = 36, from U2OS cells = 15, difference = 21, 95% 
CI = 0.3 to 41, P = .045; Figure 1, C) and were more tumorigenic 
in vivo (at 56 days, all five mice had tumors with U2OS/MTX300 
cells, and zero of five mice had tumors from U2OS cells; Figure 1, D). 
U2OS/MTX300 cells also had a much lower level of p-Ser9-GSK-3b 
than U2OS cells (Figure 1, E). Collectively, these results suggest 
that increased levels of GSK-3b activation (as measured by lack 
of p-Ser9-GSK-3b phosphorylation) are associated with greater 
tumorigenicity of osteosarcoma cells in vitro and in vivo.

Effect of Experimentally Modulated GSK-3b Activity on 
Clonogenicity and Tumorigenicity of Osteosarcoma Cells
To further confirm the finding that GSK-3b activity is associated 
with osteosarcoma tumorigenesis, we investigated whether alteration 

Figure 1. Glycogen synthase kinase-3b (GSK-3b) activity, clonogenic-
ity of osteosarcoma cells in vitro, and tumorigenicity in vivo. A, B, E) 
Western blots showing levels of (inactive) phospho-Ser9-GSK-3b 
(p-GSK-3b) and of b-catenin in five osteosarcoma cell lines and one 
normal osteoblast line (hFOB1.19). The panels to the right of blots 
(A) and (B) show quantification of the pixel density of the GSK-3b 
and b-catenin bands in comparison to pixel density of a control, 
as indicated. C) Results of colony formation assays in which the 

indicated osteosarcoma cell lines were grown in six-well plates. 
Experiments were performed in triplicate; error bars refer to 95% 
confidence intervals; *P = .045 and **P = .002. Two-sided analysis of 
variance with Bonferroni post hoc test was used. D) Tumorigenicity 
assay in which the indicated osteosarcoma cell lines were grown  
for 5 weeks in nude mice (n = 5 mice per group). Five of five mice 
developed a tumor when injected with ZOS cells, ZOS-M cells, or 
MG63 cells.



754   Articles | JNCI	 Vol. 104, Issue 10  | May 16, 2012

of the levels of active GSK-3b could modulate clonogenicity and 
tumorigenicity of osteosarcoma cell lines. In our first experiments, 
we used U2OS cells, which had moderate levels of p-Ser9-GSK-
3b and did not form tumors in nude mice (Figure 1, A). We gen-
erated stable transfectants of U2OS cells that stably overexpressed 
a kinase-inactive (KD) form of GSK-3b, in which the lysine residue 
at the position 85 was substituted with alanine, or a CA form of 
GSK-3b, in which the serine residue at the position 9 was 
substituted with alanine (GSK-3b-S9A) (Figure 2, A). Stable trans-
fectants were then single-cell cloned, to generate several lines of 
each cell type. Clonogenicity was substantially increased for CA3 
and CA9, two cell lines in which GSK-3b was constitutively active, 
but not in KD2 and KD5, two cell lines in which GSK-3b was 
inactive, in comparison with the control U2OS cells (vec) that 
were stably transfected with empty vector (at 14 days, the mean 
number of colonies from CA3 cells = 39, from CA9 cells = 59, from 
vec cells = 25; difference, CA3 vs vec = 14, 95% CI = 0.43 to 28; 
P = .042; difference, CA9 vs vec = 34, 95% CI = 18 to 50, P < .001; 
Figure 2, B). Also, both CA3 and CA9 cells were tumorigenic in 
vivo, whereas there were no tumors detected in mice injected with 
KD2, KD5, or vec cells (at 56 days, three of five mice developed 
tumors from CA3 cells, five of five mice developed tumors from 
CA9 cells, and no mice developed tumors from vec cells; Figure 2, C). 
These results indicate that overexpression of active GSK-3b in 
an osteosarcoma cell line enhances clonogenicity in vitro and 
tumorigenesis in vivo.

In a second line of experimentation, we generated stable trans-
fectants in which GSK-3b expression was silenced using a plasmid 
that expressed GSK-3b-specific shRNA. For these experiments, 

Figure 2. Clonogenicity and tumorigenicity of osteosarcoma cells that 
overexpress active glycogen synthase kinase-3b (GSK-3b). A) Western 
blot showing GSK-3b levels in U2OS cells stably transfected with the 
kinase-inactive form (KD2 and KD5) and the constitutively active form 
(CA3 and CA9) of GSK-3b, as well as empty vector (Vec1 and Vec2). B) 
Quantification of colony formation assay using the indicated stable 
transfectants. Experiments were performed in triplicate, and error bars 
refer to 95% confidence intervals. *P = .042 and **P < .001. Two-sided 
analysis of variance with Bonferroni post hoc test was used. C) 
Tumorigenicity of the indicated stable transfectants when grown for  
5 weeks in the nude mouse model (n = 5 mice per group). Three of five 
mice that were injected with CA3 cells grew tumors, compared with five 
of five mice injected with CA9 cells, and none of the five mice injected 
with U2OS cells containing empty vector.

we chose U2OS/MTX300 cells, which had low p-Ser9-GSK-3b 
levels and a transformed phenotype both in vitro and in vivo. 
Again, stable transfectants were single-cell cloned to yield several 
cell lines. GSK-3b levels were reduced by 50% in two stable trans-
fectants, SH4 and SH35 (Figure 3, A). Cell proliferation, as measured 
by growth curves (Figure 3, B), and clonogenicity, as measured by 
colony formation assays (Figure 3, C), also decreased by 50% in 
these cell lines compared with parental cells in which GSK-3b 
expression was not silenced (at 14 days, the mean number of 
colonies from SH4 cells = 18, from SH35 cells = 22, from vec cells 
= 41; difference, SH4 vs vec = -23, 95% CI = 232 to 215; P < .001; 
difference, SH35 vs vec = 219, 95% CI = 228 to 210, P = .001). 
Although both SH4 and SH35 cells were still tumorigenic in vivo, 
the tumors that arose in mice injected with these two transfectants 
were much smaller than those in mice that were injected with 
parental cells or with U2OS/MTX300 cells transfected with 
scrambled shRNA (at 25 days, the mean volume of tumors from 
SH4 cells = 177 mm3, from SH35 cells = 128 mm3, from vec 
cells = 411 mm3; difference, SH4 vs vec = 2234, 95% CI = 2360 
to 2107; P < .001; difference, SH35 vs vec = 2283, 95% CI = 2409 
to 2156, P < .001; Figure 3, D–F). These results indicate that 
reduction of GSK-3b expression impairs clonogenicity and tumor-
igenicity of an osteosarcoma cell line. Taken together, our results 
indicate that GSK-3b activity is oncogenic in osteosarcoma cells.

Effect of GSK-3b Inhibition on Osteosarcoma Cell Survival
Because expression of active GSK-3b had an oncogenic effect on 
osteosarcoma cells (Figures 1 and 2), we postulated that GSK-3b 
was critical for osteosarcoma cell survival. Indeed, cell proliferation 
was inhibited by LiCl, a known inhibitor of GSK-3b, in all osteo-
sarcoma cell lines tested, including U2OS, U2OS/MTX300, MG63, 
SAOS2, ZOS, and ZOS-M cells (Figure 4, A and Supplementary 
Figure 1, available online). To rule out the possibility that decreased 
cell proliferation was a side effect mediated by LiCl treatment, 
these cells were also treated with two GSK-3b-specific inhibitors, 
GSK-3b inhibitor IX and SB216367. Both of these drugs also 
inhibited growth of osteosarcoma cells, including U2OS cells and 
ZOS cells (Figure 4, B). Consistent with these results, reduction of 
GSK-3b expression by GSK-3b-specific siRNA resulted in a 50% 
reduction in cell viability as measured by MTT assays (Figure 4, C). 
Furthermore, our previous findings that proliferation of U2OS/ 
MTX300 cells was inhibited by stable expression of shRNA that 
reduced GSK-3b expression (Figure 3, B; SH4 and SH35) further 
confirmed the above findings with GSK-3b inhibitors and siRNA. 
These results indicate that GSK-3b is critical for cell proliferation 
in osteosarcoma cells.

Next, we sought to determine whether inhibition of GSK-3b 
would induce apoptosis in osteosarcoma cells. U2OS cells were 
treated with LiCl for several days, and western blots were used to 
measure GSK-3b activity (ie, absence of Serine 9 phosphorylation) 
and caspase 3 cleavage, a marker of apoptosis (Figure 4, D). Caspase 3 
activity assays were also performed by extracting cellular protein 
from LiCl-treated U2OS cells and incubating caspase-3 substrate 
with a fixed amount of protein for 2 hours, followed by a colorimetric 
reading. Similar experiments were conducted with extracts from 
U2OS/MTX300 cells and from U2OS cells expressing CA or  
KD GSK-3b (Supplementary Figure 2, A, available online). LiCl 
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treatment resulted in the suppression of GSK-3b activity in U2OS 
cells; p-Ser9-GSK-3b levels were increased by LiCl treatment 
(Figure 4, D and Supplementary Figure 2, A, available online). 
LiCl-mediated inhibition of GSK-3b also induced apoptosis in 
U20S and U2OS/MTX300 cells, as indicated by caspase-3 cleavage 
on western blots (Figure 4, D and Supplementary Figure 2, A, 
available online). Consistent with these results, caspase-3 activity 
assays also showed that inhibition of GSK-3b by LiCl or by 
GSK-3b-specific siRNA was accompanied by statistically signifi-
cantly increased caspase-3 cleavage (eg, caspase-3 activity in U2OS 
cells treated for 72 hours with 20 mM LiCl = 2.97-fold compared 
with control, in untreated cells = 1 (referent); difference = 1.97-fold, 
95% CI = 0.71- to 3.24-fold; P = .002; Figure 4, C and D, 
Supplementary Figure 2, A, available online). These results indicate that 
the activity of GSK-3b is critical for the cell survival of osteosarcoma 
cells because either silencing of GSK-3b expression or inhibition 
of GSK-3b activity using three different pharmacological inhibi-
tors appeared to be able to induce apoptosis. GSK-3b inhibitors 
such as LiCl and GSK-3b inhibitor IX could reduce cell proliferation 
by inducing apoptosis in U2OS cells that expressed the kinase-
inactive GSK-3 mutants (KD2 and KD5 cells) but not in U2OS 
cells that expressed constitutively active GSK-3b (CA3 and CA9 
cells) (Figure 4, E, Supplementary Figure 2, B, available online, 
and data not shown). This finding suggested that this constitutively 
active mutant of GSK-3b was not sensitive to the inhibition mediated 
by LiCl and inhibitor IX. Taken together, these results indicate 
that GSK-3b is critical for cell survival in osteosarcoma.

GSK-3b as a Potential Therapeutic Target in 
Osteosarcoma
Because GSK-3b plays an important role in the survival of osteo-
sarcoma cell lines (Figure 4 and Supplementary Figures 1 and 2, 
available online), we hypothesized that GSK-3b might be a potential 
therapeutic target in osteosarcoma. Because doxorubicin (ADM), 
methotrexate (MTX), and cisplatin (DDP) are commonly used 
chemotherapeutic drugs for patients with osteosarcoma in the clinic, 
we examined whether inhibition of GSK-3b would act additively 
with these chemotherapeutic drugs to kill osteosarcoma cells. 
U2OS cells were seeded in 96-well dishes and were simultaneously 
treated with LiCl (20 mM) and chemotherapy drugs (ADM 4 ng/mL, 
MTX 5 ng/mL, or DDP 200 ng/mL) for 72 hours. Cell viability 
was measured by MTT assay. GSK-3b inhibition by LiCl did 
enhance the apoptosis of U2OS or ZOS cells induced by ADM, 
MTX, or DDP in vitro (eg, for U2OS, the percentage of viable cells 
at 72 hours with 20 mM LiCl = 44%, with 4 ng/mL ADM = 75%, 
with both = 27%; difference, both vs ADM = 48%, 95% CI = 36% 
to 61%; P < .01; Figure 5, A and B and Supplementary Figure 3, 
A–D, available online). To further confirm the additive effect of 
GSK-3b inhibition with chemotherapeutic drugs, combinations of 
GSK-3b siRNA or other GSK-3b inhibitors and these chemother-
apeutic drugs were tested. Silencing of GSK-3b expression also 
acted additively with ADM, MTX, and DDP to promote apoptosis 
of U2OS cells (Supplementary Figure 3, E–H, available online). 
Likewise, GSK-3b inhibition by GSK-3b inhibitor IX augmented 
the apoptosis of U2OS or ZOS cells induced by chemotherapeutic 

Figure 3.  Effect of silencing glycogen synthase kinase-3b (GSK-3b) 
expression on clonogenicity and tumorigenicity of osteosarcoma cells. A) 
Western blot showing GSK-3b levels in SH4 and SH35 cells, which are 
U2OS/MTX300 cells stably transfected with GSK-3b-specific short hairpin 
RNA (shRNA). B) Growth curve of cells expressing GSK-3b shRNA as 
in (A). Experiments were performed in triplicate using the same cells 
as in (A), and error bars refer to 95% confidence intervals; *P = .002 and 
**P < .001 Two-sided analysis of variance (ANOVA) with Bonferroni 
post hoc test was used. C) Quantification of colony formation by cells 
expressing GSK-3b shRNA. Experiments were performed in triplicate 
using the same cells as in (A), and error bars refer to 95% confidence 

intervals; **P < .001. Two-sided ANOVA with Bonferroni post hoc test 
was used. D) Tumorigenicity assay of cells expressing GSK-3b shRNA. 
Experiments were carried out for 25 days using five mice per group, the 
same stable transfectants as in (A), and parental U2OS/MTX300 cells. 
Tumor volumes were monitored at day 7 and then every 3 days, as  
indicated. Error bars refer to 95% confidence intervals; **P < .001. Two-
sided ANOVA with Bonferroni post hoc test was used. E) Xenografts 
excised from the tumor bearing mice in (D) at day 25. F) Weights of 
the xenografts from (E) at day 25. Error bars refer to 95% confidence 
intervals; **P < .001. Two-sided ANOVA with Bonferroni post hoc test 
was used.
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Figure 4. Glycogen synthase kinase-3b (GSK-3b) activity and cell sur-
vival among osteosarcoma cell lines. A) Viability of U2OS cells treated with 
LiCl, a GSK-3b inhibitor, as measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 
5-diphenyltetrazolium bromide (MTT) assays. Experiments were 

performed in triplicate; and error bars refer to 95% confidence intervals. 
**P < .001. Two-sided analysis of variance (ANOVA) with Bonferroni post 
hoc test was used. B) Viability of U2OS and ZOS cells that were treated 
with SB216367 and inhibitor IX, both GSK-3b inhibitors, as measured by 

(continued)
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drugs, such as ADM, in vitro (Supplementary Figure 3, I, available 
online).

In another set of experiments, we examined the effect of GSK-3b 
inhibition on growth of osteosarcoma cells as xenografts in nude 
mice. For these experiments, U2OS/MTX300 or ZOS cells were 
injected into nude mice, and 1 week later, the mice were randomly 
separated into groups (Control, ADM, LiCl, and ADM + LiCl). 
ADM (6 mg/kg) was injected intraperitoneally once per week, and 
LiCl (340 mg/kg) was injected intraperitoneally every 2 days. 
Tumor measurements and body weights were recorded over the 
course of 3 weeks. Treatment with LiCl inhibited the growth of 
U2OS/MTX300 or ZOS cells as tumors in xenograft models (for 
U2OS/MTX300 xenografts at 17 days, the mean volume of tumors 
with no drugs = 1224 mm3, with LiCl = 657 mm3; difference = 567 
mm3, 95% CI = 127 to 1007; P = .007 mm3; for ZOS xenografts at 
21 days, the mean volume of tumors with no drugs = 1525 mm3, 
with LiCl = 430 mm3; difference = 1095 mm3, 95% CI = 808 to 
1384 mm3; P < .001). Although the inhibitory effect of LiCl alone 
on tumor growth was comparable to that of ADM alone, ADM, 
but not LiCl, decreased mouse body weight, suggesting that LiCl 
treatment resulted in fewer side effects (Supplementary Figure 4, 
A and B, available online). More importantly, the combination of 
LiCl with ADM worked additively to inhibit tumor growth from 
osteosarcoma cells in nude mice (for U2OS/MTX300 xenografts 
at 17 days, the mean volume of tumors with ADM = 706.2 mm3, 
with ADM + LiCl = 214.1 mm3; difference = 492.1 mm3, 95% 
CI = 74.1 to 910.1 mm3; P = .015; for ZOS xenografts at 21 days, the 
mean volume of tumors with ADM = 457 mm3, with ADM + LiCl 
= 127 mm3; difference = 330 mm3, 95% CI = 11 to 650 mm3; P = .044). 
Because lithium carbonate is currently used in human patients with 
bipolar disorder, we also tested whether oral administration of 
lithium carbonate had a therapeutic effect on osteosarcoma using 
xenografts in a mouse model. Daily oral administration of lithium 
carbonate did synergize with ADM to enhance inhibition of the 
growth of tumors from U2OS/MTX300 osteosarcoma cells 
(Supplementary Figure 4, C–E, available online). To further evaluate 
the antitumor effect of lithium carbonate, we used an orthotopic 
model in which the ZOS osteosarcoma cell line was injected into 
the tibia of mice. Tumors were allowed to grow for 18 days, and 
the mice were then fed lithium carbonate (250 mg/kg). In these 
experiments, lithium carbonate inhibited tumor growth and acted 
additively with ADM (at 36 days, the mean volume of tumors with 
no drugs = 479 mm3, with ADM = 143 mm3, with LiCl = 187 mm3, 
with both ADM and Li2CO3 = 80 mm3; difference, no drugs vs 

Li2CO3 = 292 mm3, 95% CI = 230 to 353 mm3; P < .001; difference, 
ADM vs ADM + LiCl = 63 mm3, 95% CI = 1.8 to 124.7 mm3; 
P = .041; Figure 5, E and Supplementary Figure 5, available 
online). Our results indicate that GSK-3b inhibition enhances the 
therapeutic efficacy of these chemotherapeutic agents when used 
in combination to treat osteosarcoma.

Role of the NF-kB Pathway in GSK-3b-Mediated 
Osteosarcoma Cell Survival
Because GSK-3b inhibition induced apoptosis in osteosarcoma, 
we examined the effect of LiCl treatment on apoptosis-related 
proteins in U2OS cells using an antibody array. Although the 
expression of many proteins related to apoptosis was changed in 
U2OS cells treated with LiCl, we focused on proteins encoded by 
NF-kB target genes, including cIAP-1, xIAP, bcl2, and survivin, 
whose expression was inhibited by LiCl treatment. Expression of 
the NF-kB-regulated gene products cIAP-1, xIAP, bcl2, and survivin 
was inhibited by LiCl (Figure 6, A). These results were further 
confirmed by RT-PCR (Supplementary Figure 6, C, available 
online) and chromatin immunoprecipitation with anti-p65 antibody 
(Supplementary Figure 6, D, available online), indicating that the 
NF-kB pathway may be regulated by GSK-3b in osteosarcoma. In 
support of this conclusion, LiCl treatment of U2OS cells caused 
decreased IkBa phosphorylation, whereas the total protein level of 
IkBa was correspondingly increased (Figure 6, B). Likewise, nuclear 
localization of the NF-kB p65 protein, which is an indicator of 
NF-kB transcriptional activity, was also decreased in U2OS cells 
treated by LiCl (Figure 6, B). In addition, inhibition of GSK-3b by 
either LiCl or by GSK-3b-specific siRNA resulted in a substantial 
reduction of NF-kB-luciferase reporter activity (Figure 6, C). 
NF-kB-luciferase reporter activity was increased twofold in cell 
lines that expressed CA GSK-3b, but not in cell lines that expressed 
KD GSK-3b (Figure 6, D). By contrast, NF-kB-luciferase 
reporter activity was substantially decreased (by 50%) in SH4 
and SH35 cells, which were stably transfected with GSK-3b-shRNA 
(Figure 6, D).

Next, we asked whether activation of the NF-kB pathway 
mediated the oncogenic effects of GSK-3b in osteosarcoma. Both 
the mutant form of IkBa [IkBa-mut, which is widely known to 
inhibit the NF-kB pathway (22)], and NF-kB p65-specific siRNA 
were able to enhance apoptosis of U2OS cells induced by LiCl 
(Figure 6, E). In addition, reduction of IkBa expression by siRNA 
in U2OS cells partially reversed the inhibitory effect of LiCl on 
cell viability (Figure 6, F). Likewise, cells ectopically transfected 

MTT assays. Experiments were performed in triplicate; and error bars 
refer to 95% confidence intervals; **P < .001. Two-sided ANOVA with 
Bonferroni post hoc test was used. C) Effect of GSK-3b silencing on 
apoptosis of osteosarcoma cells. U2OS cells were treated with control 
short interfering RNA (siRNA) or GSK-3b-specific siRNA for 72 hours 
and cellular viability was monitored by MTT assays (left panel, P = .019), 
and caspase-3 activity was also measured (right panels, P < .001). An 
unpaired two-sided Student’s t test was used. Experiments were per-
formed in triplicate; and error bars refer to 95% confidence intervals. D) 
Effect of GSK-3b inhibition on apoptosis of osteosarcoma cells. U2OS 
cells were treated with 1–20 mM LiCl for 72 hours (upper panel), or with 
20 mM LiCl for 24–96 hours (lower panel) as indicated. Caspase 3 
cleavage was determined by western blotting (left panels, P = .007), 

and caspase-3 activity assays were performed (right panels, P < 
.001). Two-sided ANOVA with Bonferroni post hoc test was used. 
Experiments were performed in triplicate; and error bars refer to 95% 
confidence intervals. E) Effect of LiCl treatment on osteosarcoma cells 
with varying levels of active GSK-3b. U2OS cells stably transfected with 
the kinase-inactive form (KD2 and KD5) and the constitutively active 
form (CA3 and CA9) of GSK-3b (shown in Figure 2, A) were treated with 
20 mM LiCl for 72 hours or were left untreated, and then cell viability 
was monitored by the MTT assay (left panel, **P < .001), and caspase-3 
activity was measured (right panel, *P = .016, **P < .001). Two-sided 
ANOVA with Bonferroni post hoc test was used. Experiments were 
performed in triplicate; and error bars refer to 95% confidence 
intervals.

Figure 4 (continued).
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with p65 were more resistant to apoptosis by LiCl (Figure 6, F). 
Taken together, these results demonstrate that GSK-3b activation 
stimulates NF-kB activity and that inhibition of the NF-kB 
pathway induces apoptosis in osteosarcoma cells.

Combined Effect of LiCl, Chemotherapeutic Drugs, and 
NF-kB Inhibitors on Osteosarcoma Growth
Because GSK-3b regulates cell survival partially through the 
NF-kB pathway in osteosarcoma cell lines and because NF-kB 

Figure 5. Glycogen synthase kinase-3b (GSK-3b) as a potential thera-
peutic target in osteosarcoma, in vitro and in vivo. (A, B) Effect of LiCl/ 
doxorubicin (ADM) combination treatments on osteosarcoma cells in 
vitro. U2OS or ZOS cells were treated with LiCl (20 mM), ADM (4 ng/
mL), or both for 72 hours, as indicated. Cell viability was measured by 
3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT)  
assays. Experiments were performed in triplicate; and error bars refer 
to 95% confidence intervals. *P = .011 for (A) and * P = .021 for (B). Two-
sided analysis of variance (ANOVA) with Bonferroni post hoc test was 
used. C and D) Effect of LiCl and/or ADM combination treatments on 
osteosarcoma xenografts in nude mice. U2OS/MTX300 or ZOS cells 
were injected subcutaneously in nude mice (n = 6 per group), and 
tumors were allowed to grow for 17 or 21 days. Starting on day 7, the 
mice were given LiCl (340 mg/kg) every 2 days and/or ADM (6 mg/kg) 

once a week intraperitoneally. The tumor volumes were monitored on 
day 7 and then every 2 days, as indicated (left panels), and the xeno-
grafts were excised and weighed on day 17 (right panels). Error bars 
refer to 95% confidence intervals. **P < .001. Two-sided ANOVA with 
Bonferroni post hoc test was used. E) Use of lithium carbonate and 
ADM to treat osteosarcoma in an orthotopic mouse model. ZOS cells 
were implanted in the proximal tibia and allowed to grow for 36 days. 
Starting on day 18, mice (n = 5 per group) were administered 250 mg/
kg lithium carbonate intragastrically every day and/or 6 mg/kg ADM 
intraperitoneally once a week. The tumor volumes were monitored  
at day 18 and then every 2 days, as indicated (left panels), and the  
xenografts were then excised and weighed on day 36 (right panels). 
Error bars refer to 95% confidence intervals; **P < .001. Two-sided 
ANOVA with Bonferroni post hoc test was used.
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inhibitors such as pyrrolidine dithiocarbamate (PDTC), parthenolide 
(PARTH), and Bay 11-7085 (BAY) have been successfully used in 
preclinical studies in mouse models (4,37–39), we investigated 
whether apoptosis could be increased by the inhibition of both 
NF-kB and GSK-3b in osteosarcoma. U2OS and ZOS osteosarcoma 

cells were seeded in 96-well dishes and treated with different con-
centrations of LiCl (20 mM), chemotherapy drugs (ADM 4 ng/mL, 
MTX 5 ng/mL, DDP 200 ng/mL) and/or NF-kB inhibitors 
(PDTC 10 µM, PARTH 2 µM, BAY 2.5 µM) for 48 hours, and cell 
viability was measured by MTT assay. As expected, treatment with 

Figure 6. A role for the nuclear factor-kB (NF-kB) pathway in glycogen 
synthase kinase-3b (GSK-3b)–regulated osteosarcoma cell survival. A 
and B) Effect of GSK-3b inhibition on NF-kB pathway-related and 
apoptosis-related protein expression. U2OS cells were treated with 20 
mM LiCl for 72 hours or left untreated, and the indicated proteins were 
analyzed by western blotting. C) Effect of GSK-3b inhibition on NF-kB-
mediated transcription. U2OS cells were transfected with a plasmid 
encoding a luciferase reporter protein under NF-kB-mediated transcrip-
tional control, and they were then treated with or without LiCl (20 mM) 
(left panel, *P = .018), or control or GSK-3b-siRNA (right panel, **P < 
.001) for 72 hours. The NF-kB luciferase activity was monitored as 
described in the “Methods” section. Experiments were performed in 
triplicate; error bars refer to 95% confidence intervals. An unpaired 
two-sided Student’s t test was used. D) Effect of varying GSK-3b levels 
on NF-kB-mediated transcription. Stably transfected U2OS or U2OS/
MTX300 cells (as shown in Figures 2 and 3) were transfected with the 
NF-kB-luciferase reporter and NF-kB-regulated luciferase activity was 

monitored as described in the “Methods” section. Experiments were 
performed in triplicate; error bars refer to 95% confidence intervals; 
**P < .001. Two-sided analysis of variance (ANOVA) with Bonferroni 
post hoc test was used. E and F) Viability of osteosarcoma cells in the 
presence of a mutant IkBa protein that inhibits the NF-kB pathway. 
Cellular viability assays were performed in U2OS cells transiently 
transfected with plasmids encoding the mutant form of IkBa (IkBa-
mut; in which two serine residues at both 32 and 36 were changed into 
alanine residues), NF-kB p65-siRNA, IkBa-siRNA, or NF-kB p65 for 
72 hours. The inserts show western blotting (WB) and reverse  
transcription-polymerase chain reaction experiments to quantify the 
expression of the transfected genes. Experiments were performed in 
triplicate; error bars refer to 95% confidence intervals; *P = .0045 in left 
panel and *P = .001 in the right panel for (E); **P < .001 in left panel 
and *P = .001 in the right panel for (F). Two-sided ANOVA with 
Bonferroni post hoc test was used. RT-PCR = reverse transcription-
polymerase chain reaction.
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LiCl or NF-kB inhibitors could induce apoptosis in both ZOS and 
U2OS cells (Figure 7, A, Supplementary Figure 7, A and B, available 
online). More importantly, the combination of LiCl with several 
different NF-kB inhibitors enhanced the induction of apoptosis 
in these two cell lines. Because GSK-3b inhibition resulted in the 
chemotherapeutic enhancement in osteosarcoma (Figure 5 and 
Supplementary Figure 3, available online) and DNA damage 
induced by chemotherapeutic drugs often also results in NF-kB 
pathway–dependent apoptosis (16), we next tested combinations 
of LiCl, ADM, and NF-kB inhibitors to treat osteosarcoma. 
Combinations of LiCl, ADM, and NF-kB inhibitors induced 
more apoptosis than either LiCl with ADM or LiCl with NF-kB 
inhibitors in U2OS or ZOS cells in vitro (eg, for U2OS cells, the 
percentage of viable cells with LiCl = 75%, with LiCl + ADM = 52%, 
with LiCl + PDTC= 35%, with LiCl + ADM + PDTC = 12%; 
difference, LiCl vs Li + ADM = 22%, 95% CI = 0.83% to  
43%; P = 0.038; difference, LiCl vs all three drugs = 63%, 95% CI = 
41% to 84%; P < .001; Figure 7, A, Supplementary Figure 7, A and 
B, available online). Most importantly the combination of LiCl 
with either ADM or PDTC was more effective than LiCl alone for 
inhibiting tumor growth in mice carrying xenografts of ZOS cells, 
and the combination of LiCl, ADM, and PDTC showed the most 
statistically significant inhibition of tumor growth (at 21 days, mean 
tumor volume with LiCl = 443 mm3, with LiCl + ADM = 175 mm3, 

with LiCl + PDTC= 210 mm3, with LiCl + ADM + PDTC = 124 
mm3; difference, LiCl vs Li + ADM = 269 mm3, 95% CI = 118 to 
420 mm3; P < .001; difference, LiCl vs all three drugs = 319 mm3, 
95% CI = 167 to 469 mm3; P < .001; Figure 7, B–D). Notably, the 
inhibitory effect of PDTC on tumor growth was comparable to 
that of ADM or LiCl alone, and like LiCl, PDTC had minimal 
toxicity in vivo, as indicated by mouse body weight (Figure 7, E). 
Collectively, these results indicate that the combination of LiCl, 
ADM, and NF-kB inhibitors may be an attractive therapeutic 
modality for treating osteosarcoma.

Association of GSK-3b Activity with Clinical Outcome 
Among Osteosarcoma Patients
We also determined whether GSK-3b activity was associated with 
the clinical outcome of patients with osteosarcoma. To this end, 
tumor samples from 74 osteosarcoma patients were collected for 
immunohistochemistry using anti-p-Ser9-GSK-3b and anti-p65 
antibodies. Among them, 33 patients’ samples (40%, including 
10 biopsy samples and 23 surgical resections) were positive for 
p-Ser9-GSK-3b (indicating GSK-3b inhibition), whereas 41 patients’ 
samples (60%, including 15 biopsy samples and 26 surgical resec-
tions) were negative for p-Ser9-GSK-3b, with breast cancer tissues 
as the positive control (Supplementary Figure 8, A and B, available 
online). These results demonstrated hyperactivation of GSK-3b in 

Figure 7. Combination of LiCl, doxorubicin (ADM), and nuclear factor-
kB (NF-kB) inhibitors to target osteosarcoma in vitro and in vivo. A) 
Viability of osteosarcoma cells treated with LiCl, ADM, and/or an NF-kB 
inhibitor. U2OS or ZOS cells were treated with ADM (4 ng/mL), LiCl (20 
mM), and/or pyrrolidinedithiocarbamate (PDTC; 10 µM), as indicated, for 
48 hours. Cell viability was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 
5-diphenyltetrazolium bromide (MTT) assays. Experiments were  
performed in triplicate; error bars refer to 95% confidence intervals; 
**P < .001. Two-sided analysis of variance (ANOVA) with Bonferroni 
post hoc test was used. B) Size of osteosarcoma xenografts in mice 
treated with LiCl, ADM, and/or an NF-kB inhibitor. ZOS cells were 
injected subcutaneously into right flank of nude mice and allowed to 
grow for 21 days. Starting on day 7, mice (n = 8 per group) were admin-
istered 340 mg/kg LiCl every 2 days and/or 6 mg/kg ADM once a week 
and/or 200 mg/kg PDTC every 2 days intraperitoneally, and the tumor 
volumes were monitored at day 7 and then every 2 days, as indicated. 

Error bars refer to 95% confidence intervals. Means with 95% confi-
dence intervals for each group are as follows: Control = 1715 mm3 (95% 
CI = 1598 to 1832); ADM = 465 mm3 (95% CI = 393 to 537); LiCl = 443 mm3 
(95% CI = 300 to 587); PDTC = 488.2 mm3 (95% CI = 430 to 546); LiCl + 
ADM = 175 mm3 (95% CI = 154 to 195); LiCl + PDTC = 211 mm3 (95% 
CI = 197 to 224); LiCl + ADM + PDTC = 124.7 mm3 (95% CI = 113 to 136); 
**P < .001. C and D) Gradient of tumor sizes in mice treated with LiCl, 
ADM, and/or an NF-kB inhibitor. The xenografts were excised from the 
mice in panel (B) on day 21 and were photographed as shown in panel 
(C). They were then weighed, as shown in panel (D). Error bars refer to 
95% confidence intervals; *P = .011 and **P < .001. Two-sided ANOVA 
with Bonferroni post hoc test was used. E) Effect of drug treatments on 
mouse body weights, as an indicator of toxicity. Body weights of  
the mice bearing xenografts in (B) were measured every 2 days as 
indicated. Error bars refer to 95% confidence intervals. **P < .001. 
Two-sided ANOVA with Bonferroni post hoc test was used.
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the majority of patients with osteosarcoma. More interestingly,  
16 patients’ samples were positive for nuclear localization of 
NF-kB p65 (seven biopsy samples and nine surgical sections), 
whereas 58 patients’ samples were negative (18 biopsy samples 
and 40 surgical resections). These results suggested that inactive 
p-Ser9-GSK-3b is associated with osteosarcoma (P = .019; Figure 
8, A) and indicate that the GSK-3b/NF-kB pathway is affected in 
patients with osteosarcoma. Among 74 patients with osteosar-
coma, 61 patients, whose characteristics are listed in Supplementary 
Table 1 and Supplementary Methods (available online), were suc-
cessfully followed up, and most of them had tumors that were 
grade IIB according to the Enneking staging system (40). Among 
these 61 patients, there was a statistically significant difference in 
overall survival between the 27 patients whose tumors were posi-
tive for (inactive) p-Ser9-GSK-3b and the 34 patients whose 
tumors were negative for (inactive) p-Ser9-GSK-3b as estimated with 
the Kaplan–Meier method by log-rank test (at a median follow-up 
of 4 years, OS for patients whose tumors had inactive GSK-3b = 
109.2 months, OS for patients whose tumors did not have inactive 
GSK-3b = 49.2 months, P = .027; Figure 8, B). Our results indicate 
that increased expression of active GSK-3b is associated with poor 
prognosis in patients with osteosarcoma.

Discussion
In this report, we demonstrated that GSK-3b activity is positively 
associated with clonogenicity and tumorigenicity and is critical for 
cell survival in osteosarcoma. Inhibition of GSK-3b partially 

Figure 8.  Association of glycogen synthase kinase-3b (GSK-3b) ac-
tivity with the clinical outcome of patients with osteosarcoma. 
Immunohistochemical analysis was performed on 3-µm sections from 
paraffin-embedded tissues of 74 patients with osteosarcoma using the 
primary antibodies against phosphorylated-GSK-3b (Serine 9) or p65, 
as described in “Materials and Methods.” An inverse relationship was 
observed between (inactive) p-Ser9-GSK-3b and (active) nuclear 
p65 levels in osteosarcoma samples in the clinic; P = .019. B) Overall 
survival rates of patients with osteosarcoma positive or negative for 
p-Ser9-GSK-3b were estimated with the Kaplan–Meier method by 
log-rank test; n = 61, P = .027. C) Proposed model. The nuclear factor-kB 
(NF-kB) pathway may have critical roles in the cell survival of osteosar-
coma, which are mainly mediated by GSK-3b and IkB kinase (IKK). 
When GSK-3b or IKK is impeded, IkBa is stabilized and retained in the 
cytoplasm, causing the cell survival pathway to be impaired directly, 
which in turn enhances apoptosis induced by chemotherapies for 
osteosarcoma.

decreased the expression of NF-kB pathway genes and yielded 
antitumor effects in mouse models of osteosarcoma. We conclude 
that GSK-3b positively regulates the NF-kB pathway to promote 
oncogenic activities in osteosarcoma and that therapeutic targeting 
of the GSK-3b and/or NF-kB pathways may be a promising 
strategy to enhance the therapeutic activity of anticancer drugs 
against osteosarcoma in vitro and in vivo.

GSK-3b, a key component of both the canonical WNT/b-
catenin and PI3K/Akt signaling pathways, is commonly considered 
a tumor suppressor in multiple cancers, such as breast and skin 
cancer (7). In this set of cancers, inhibition of GSK-3b favors cell 
proliferation and tumorigenesis (5,7,9). On the other hand, GSK-
3b was found to function as an oncogene in several cancer types, 
such as mixed lineage leukemia (8–10), glioma (11), and oral cancer 
(7). In these cancers, inhibition of GSK-3b may serve as a thera-
peutic target (5,7,9). Here, we provide evidence that GSK-3b 
positively regulates the NF-kB pathway and is a promising thera-
peutic target in osteosarcoma, especially if GSK-3b inhibition is 
combined with ADM and/or NF-kB inhibitors. Because both LiCl 
(Figure 5 and 7) and lithium carbonate (Figure 5, E, Supplementary 
Figures 4, C and D and 5, available online) had a therapeutic effect 
and low toxicities were observed, targeting GSK-3b in patients 
with osteosarcoma may represent a novel and feasible approach. Of 
these, lithium carbonate carries the extra advantage that it is 
already currently in clinical use for patients with bipolar disorder. 
In addition, GSK-3b inactivation (p-Ser9-GSK-3b) may represent 
a valuable biomarker for predicting prognosis; the status of the 
GSK-3b/NF-kB pathway may have the potential to guide person-
alized therapies in the future by directing subsets of osteosarcoma 
patients to therapies that target GSK-3b and NF-kB signaling, 
such as combinations of ADM, lithium carbonate, and/or NF-kB 
inhibitors.

The NF-kB pathway is activated by a variety of cellular and 
developmental signals (12–15). Deregulated activation of NF-kB 
has been observed and causally linked to tumor chemoresistance 
(16). Here, we showed that NF-kB inhibitors could suppress the 
growth of osteosarcoma and that GSK-3b inhibition could 
enhance this effect both in vitro and in vivo. We also showed 
that GSK-3b–induced activation of NF-kB pathway may cause 
chemoresistance in osteosarcoma tumors.

Biological and pathological functions of GSK-3b have been 
linked to the NF-kB pathway for a decade (41), but the question of 
how GSK-3b activates NF-kB signaling is poorly understood. In 
pancreatic cancer, GSK-3a/b maintains constitutive NF-kB 
activation by regulating IkB kinase (IKK) activity and the loss of 
GSK-3a/b blocks IkBa phosphorylation (42). However, in GSK-3b-
deficient mouse embryonic fibroblasts, degradation of IkBa and 
translocation of NF-kB to the nucleus were unaffected (41). We 
may speculate that GSK-3b may phosphorylate IkBa to release 
p65 and p50 into the nucleus to affect target gene expression because 
IkBa may be phosphorylated by GSK-3b, as previously pro-
posed (43). In addition, GSK-3b may phosphorylate p65 to 
enhance the transcriptional activity of p65, as shown in pancreatic 
cancer (42). Considering the established role of IKK in NF-kB 
pathway, we propose that the NF-kB pathway may have critical 
roles in the cell survival of osteosarcoma, which are mainly mediated 
by GSK-3b and IKK (Figure 8, C). When GSK-3b or IKK is 
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impeded, IkBa is stabilized and retained in the cytoplasm, and the 
cell survival pathway is impaired directly. This may explain why 
GSK-3b inhibition acted additively with NF-kB inhibitors for 
osteosarcoma in vitro and in vivo.

In addition, as shown in some cancer cells (44), chemotherapies, 
including ADM and DDP, are able to induce apoptosis through 
the NF-kB pathway. This may explain why chemotherapies, such 
as ADM, MTX, and DDP, could be enhanced by GSK-3b inhibition 
and/or NF-kB inhibitors for osteosarcoma in vitro and in vivo. 
However, further investigation is required to fully elucidate how 
NF-kB activity is regulated by GSK-3b in osteosarcoma. Villalobos 
et al. (45) recently identified GSK-3b consensus sequences in IkB 
that impact ligand-induced IkB processing and NF-kB signaling. 
This finding may directly support our model for osteosarcoma.

There are several limitations to our work. First, we did not 
determine the exact mechanism through which GSK-3b regulates 
NF-kB signaling, and this deserves to be further investigated. Second, 
our results were obtained from osteosarcoma cell lines grown as 
xenografts in nude mice, and the real situation in the patients with 
osteosarcoma may be different. Therefore, we look forward to the 
results of clinical trials to test combinations of chemotherapy drugs 
with lithium carbonate and/or NF-kB inhibitors in patients with 
osteosarcoma.

In summary, we have clearly demonstrated that GSK-3b 
represents a promising therapeutic target in osteosarcoma. More 
importantly, patients with osteosarcoma may be treated individually 
in the future, depending on the status of the GSK-3b–NF-kB 
pathway.
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