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Elraglusib (9-ING-41) is a selective GSK-3 inhibitor that has demonstrated
preliminary signs of activity on a broad array of neoplasms as well as their
Immune microenvironment. However the determinants of tumor response In

patients have not been elucidated. Here, we use genomic panels

of cancer

driver genes to predict patient response to elraglusib therapy as measured by
RECIST criteria. Patient response Iin the Phase | 1801 trial (NCT03678883)
was matched to genomic data from patient tumors, with 80 cases used to

train Machine Learning models and 26 cases reserved as a test set

for model

evaluation. When predicting response from mutation status alone our models
reached a modest accuracy of 65% In the test set, which we attributed to the
sparsity of genomic data. To remedy this, we engineered pathway-based
features to provide combinatorial information while ensuring feature stability.
To select the optimal combination of features, we designed an iterative design
process that first randomized feature combinations and then created refined

models from the highest performing pathway features. This resulted

INn several

final models with greater than 88% accuracy. We retained several models of
similar accuracy to more comprehensively identify potential biomarkers and
combinatorial relationships. These models were then Interpreted using
SHapley Additive exPlanations (SHAP) where we were able to identify highly
predictive features for both the entire pan-cancer cohort and specific
histologies. We found the feature constructed from the Reactome pathway
“Chromatin Modifying Enzymes” frequently occurred Iin high performing
models with a high-ranking SHAP value. This feature included genes such as
SMARCAA4, HDAC2, and KDM5A, and was negatively associated with patient
response. Another frequently observed high-ranking pathway feature with a
negative response association was based on the “Innate Immune System”
Reactome pathway. Many of the features highlighted in our models were
negatively associated with elraglusib response and thus could be general
markers of poor prognosis unrelated to drug effect. To address this, we
altered our pipeline to test only positively associated features which

substantially reduced our feature pool to only 285 features but still

produced

models with accuracies of up to 81%. Analysis of key features used by these
models identified several positive markers of elraglusib including mutations in

the POLE gene, which previously has been linked to DNA-damage
deficiency and anti-tumor immune response. In sum, we forecast

response
elraglusib

response for a variety of tumor histologies and simultaneously reveal potential
mechanisms of elraglusib sensitivity and biological action. In future work we

will investigate the utility of using POLE and other identified
candidates to predict the likelihood of patient response to elraglusi
as whether our machine learning models will be an effective too
patient enrichment or stratification.
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Figure 1. A) The number of responders (Stable Disease or better) or non-responders
(Progressive Disease) per each histology class. B) The number of significant features across
different models as determined by unpaired two-sided t-tests
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Input Data: Patients in the Phase | 1801 trial were given Elraglusib injection and patient response
was measured by RECIST 1.1. 106 patients had tumor biopsies prior to treatment that was
analyzed in a mutation panel of ~400 alterations, including SNVs and amplifications, in cancer
related genes.

Modeling: Genetic alterations were converted to binary representations and converted into feature
representations that pooled multiple genes into a normalized score. Genetic pathways and protein
Interaction lists were used to group genes, which were scored by the fraction of genes present out
of the total number of pathway genes that were available in a panel. Pathway features increased
significance of associations with patient response. Features were compared for performance In
machine learning. A training set of 80 patients was used for iterative feature reduction, and
evaluated by performance Iin a test set of 26 patients. Feature contributions were evaluated by
SHAPIey values calculated from 25 random orderings.
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Figure 2. Neural network architectures for top machine learning models
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Mutations in

Chromatin OORIC - SMARCAL, KMT2D, MLL2, KMT2A, ML KNT2G, MLig, G538 phospholetion s reportd fo regulat
modifying negatively PRDM16, EZH2, EED, WHSC1, SETD2, DOTI1L, NSD1, KDMO6A, GSK3B/HDAC inhibition isj report’ed e
associated KDMO5A, CDK4, CCND1, ARID2, PBRM1, ARID1B, ARID1A,

enzymes with patient DNMT3A, JAK2, YEATS4, EP300, CREBBP. HDAC2 anti-tumor effects m Pancreatic Cancer mouse
response models (Edderkaoui, 2018).

Mutations in

£ TP53, NFKBIA, NOD1, MAP2K4, PPP2R1A, JUN, MAP2K1,
eature

GSK3B is known to regulate the immune system

Innate neaativel MAP3K1, BIRC3, BTK, SOCS1, PLCG2, APOB, SLC2A3, (Huntington, 2022; Carneiro, 2020), and we
Immune assgociateﬁ IMEM173, IDH1, B2M, NRAS, BCL2L1, TNFAIP3, CYLD, hypothegsize ’that Eiraglusib E;cts by ’enhancing
System with patient EP300, CREBBP, PIK3R1, PIK3R2, PIK3CA, ABL1, NF2, ANLtUIMOr IMMUNE TeShONSe
respo%se CARD11, KRAS, HRAS, PAK3, CTNNB1, PRKDC, ITK p '
Termination Mutations in
of feature Mutations in POLE and POLD1 have been
translesion p051t1yely POLE, POLD1 associated with mgreased tumor' mutational
DNA astsomat{?d burden and neo‘antlgen load,‘wblch enhances
with patient response to anti-PD-1 CPI (Rivzi, 2016)

synthesis
response

e Generation of pathway features can increase the information
content of genomic data, leading to more significant
assoclations with drug response, and features better suited
to machine learning.

e Patient genomics can be converted into input for machine
learning models that accurately predict whether a patient will
benefit from elraglusib.

e POLE Is proposed as a positive marker for elraglusib
response, which Is consistent with the hypothesized role of
GSK-3 Inhibition iIn damaged DNA response deficiency and
activation of iImmune response.

e Mutations In Chromatin Modifying Enzymes appear to
negatively impact response.

Exploring Mechanisms of Resistance to Elraglusib in
Pancreatic Cancer and PDX Models

Immunomodulation in Elra Phase 1/2 Trials
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