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Abstract

Cancers are driven by a population of cells with the stem cell properties of self-renewal and unlimited growth. As a
subpopulation within the tumor mass, these cells are believed to constitute a tumor cell reservoir. Pathways controlling the
renewal of normal stem cells are deregulated in cancer. The polycomb group gene Bmi1, which is required for neural stem
cell self-renewal and also controls anti-oxidant defense in neurons, is upregulated in several cancers, including
medulloblastoma. We have found that Bmi1 is consistently and highly expressed in GBM. Downregulation of Bmi1 by
shRNAs induced a differentiation phenotype and reduced expression of the stem cell markers Sox2 and Nestin. Interestingly,
expression of glycogen synthase kinase 3 beta (GSK3b), which was found to be consistently expressed in primary GBM, also
declined. This suggests a functional link between Bmi1 and GSK3b. Interference with GSK3b activity by siRNA, the specific
inhibitor SB216763, or lithium chloride (LiCl) induced tumor cell differentiation. In addition, tumor cell apoptosis was
enhanced, the formation of neurospheres was impaired, and clonogenicity reduced in a dose-dependent manner. GBM cell
lines consist mainly of CD133-negative (CD133-) cells. Interestingly, ex vivo cells from primary tumor biopsies allowed the
identification of a CD133- subpopulation of cells that express stem cell markers and are depleted by inactivation of GSK3b.
Drugs that inhibit GSK3, including the psychiatric drug LiCl, may deplete the GBM stem cell reservoir independently of
CD133 status.
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Introduction

Recent studies suggest that cancer stem cells are the driving

force behind tumorigenesis [1]. CD133 (also known as Prominin 1)

was identified as a surface marker of cancer stem cells in brain

tumors [2]. As few as 100 CD133-positive (CD133+) cells were

shown to induce tumors in transplantation experiments giving rise

to a phenocopy of the initial neoplasia [2,3]. CD133+ cells, which

express multi-drug resistance and DNA repair proteins [4], are

highly resistant to chemo- and radiation therapy. However,

stemness is not restricted to the expression of the CD133 marker,

since CD133-negative (CD1332) cell populations were also found

to be tumorigenic [5]. Cancer stem cells have also been detected in

glioblastoma (GBM), the most malignant human brain tumor,

with an annual incidence of 36 per million and a mean survival of

less than 1 year [6–8]. GBM, a highly invasive and proliferative

tumor, manifests itself as a de novo lesion or progresses from less

undifferentiated low-grade astrocytoma.

Bmi1 is a member of the polycomb group of proteins involved

in brain development [9]. Polycomb group proteins maintain

embryonic and adult stem cells by forming multi-protein

complexes that function as transcription repressors [10–17].

Bmi1 is also involved in cancer by cooperation with Myc in

lymphoma formation [18] and blocking of senescence in

immortalized mouse embryonic fibroblasts through repression of

the Ink4a/Arf-locus [19]. It is also amplified and/or overexpressed

in non-small-cell lung cancer, colorectal carcinoma, nasopharyn-

geal carcinoma, medulloblastoma, lymphoma, multiple myeloma

and primary neuroblastoma [9,13,19–22]. Whether Bmi1 is

expressed in GBM is controversial [9]. In a mouse glioma model,

Bmi1 was implicated in tumorigenesis in an Ink4a/Arf-indepen-

dent manner [23]. Furthermore, it was shown recently that

microRNA-128 inhibits proliferation and self-renewal in glioma at

least partially by downregulating Bmi1 [24].

Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase,

regulates numerous signaling pathways involved in cell cycle

control, proliferation, differentiation and apoptosis [25,26]. The

mammalian isoforms GSK3a and GSK3b are functionally

independent as GSK3a cannot rescue the embryonically lethal

phenotype of GSK3b (2/2) mice [27]. GSK3 has been described

as a pro-survival factor in pancreatic cancer [28] and as a pro-

apoptotic factor in colorectal cancer [29] and is interconnected with

several pathways and implicated in Alzheimer’s disease [30],

diabetes [31], bipolar disorder [32], and more recently cancer [33].

We have analyzed the role of GSK3 in malignant gliomas and

its links to critical signaling proteins. Downregulation of Bmi1

reduced GSK3b levels and induced the differentiation of

malignant glial cells. Direct inhibition of GSK3b by lithium

chloride (LiCl), SB216763 and siRNA decreased Nestin and Sox2

levels and induced the cell differentiation markers CNPase, glial
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fibrillary acidic protein (GFAP) and b-tubulin III. In addition, LiCl

and SB216763 depleted cancer stem cells grown as human GBM

ex vivo cell cultures, induced differentiation and inhibited neuro-

sphere formation. Thus, GSK3 may represent a novel therapeutic

target for malignant gliomas.

Materials and Methods

Patients
Tumor samples obtained from patients during a neurosurgical

procedure were immediately frozen and kept at 280uC. All patients

gave their written consent for the neurosurgical procedure and for

anonymous scientific analysis of diseased tissue according to the

guidelines of the Ethics Committee of Basel, Switzerland (EKBB).

Cell culture and reagents
LN319, LN18, LN215, U373, LN229, LN401, U343, U87,

BS125 and Hs683 glioma cell lines with defined genetic status of

TP53, p16/p14 and PTEN [34], DAOY medulloblastoma and

B104 neuroblastoma cell lines were cultured in Eagle medium

supplemented with 25 mM glucose, glutamine, standard antibiot-

ics, and 10% FCS. BS287 cells were cultured in Neurobasal

medium (Invitrogen) supplemented with basic fibroblast growth

factor (20 ng/ml, Invitrogen), epidermal growth factor (20 ng/ml,

R&D Systems), B27 (1x) and N2 supplement (0.5x) (Invitrogen).

All cells were maintained at 37uC in 5% CO2. The cell lines were

seeded in 6-cm plates at 5’000–10’000 cells/cm2 and grown for

24 h prior to treatment. For cell counting, cells were treated for

72 h as described in the figure legends and counted by

hemocytometer. Lithium chloride (LiCl) was obtained from

MERCK and SB216763 from Tocris. Drug concentrations used

are indicated in the figure legends. LiCl was dissolved in PBS and

SB216763 in DMSO and stored at 220uC. The EGFR inhibitor

AEE788 was provided by Novartis Pharma. The c–secretase

inhibitor DAPT was obtained from Roche.

Colony formation assay
For each cell line, 500 cells were plated in triplicate into 94-mm

Petri dishes containing 10 ml of culture medium with 10% FCS.

Cells were grown for 14 days at 37uC and 5% CO2, during which

period the medium was not changed. Cells were then fixed with

4% formaldehyde in 1x PBS and stained with crystal violet.

BS287 ‘‘ex vivo’’ cell line formation and neurobasal
medium

Following informed consent, a tumor sample classified as GBM

based on the WHO criteria was obtained from a patient

undergoing surgical treatment at the University Hospital, Basel,

Switzerland. Within 1–3 h after surgical removal, the sample was

treated with the Neural Tissue Dissociation Kit (Miltenyi Biotec

GmbH) according to the manufacturer’s protocol. Tumor cells

were cultured in NBE media. Uncoated plastic dishes were used

for neurosphere culture of NBE cells.

Plasmids, lentiviruses and transfection
The lentiviral vectors pLKO.1-puro-scrambled-shRNA (Addgene)

and pLKO.1-puro-shRNA (Sigma, sh1061: CCGGCCTAATACTT-

TCCAGATTGATCTCGAGATCAATCTGG AAAGTATTAGGTTTTT,

sh693: CCGGCCAGACCACTACTGAATATAACTCGAGTTATA TTC-

AGTAGTGGTCTGGTTTT) targeting Bmi1 were transfected into

HEK293 cells together with plasmids encoding the packaging

(pCMV_dr8_91) and envelope proteins (pMD2-VSV-G) using

CaCl2 precipitation. The concentration of infectious particles in the

supernatant was titrated using HeLa cells. Glioma cells were

transduced with infectious viral particles. Stably transfected clones

were selected with 2 mg/ml puromycin. Bmi1 overexpression was

obtained with pBABE-puro and pBABE puro-Bmi1 using CaCl2
precipitation for 8 h. Stably transfected clones were selected with

2 mg/ml puromycin. siRNA transfection for GSK3 was performed

using the GSK-3a/b siRNA SignalSilence Kit (Cell Signaling

Technology) according to the manufacturer’s instructions. Cells were

transfected using the Amaxa Nucleofector device (Lonza). Cells

transfected with non-specific siRNA were used as a control.

Transwell migration assays
Transwell migration assays were performed using modified

Boyden chamber units with polycarbonate filters of 8-mm porosity

(Costar). The lower side of the filter was coated with 10 mg/ml

fibronectin for 2 h at 37uC. The bottom chamber was filled with

DMEM containing 10% FCS. Cells (104 per well in serum-free

DMEM) were plated in the upper chamber and incubated for 24 h

with or without GSK3b inhibitors. After removal of the remaining

cells from the upper surface of the filter, migrated cells at the

bottom of the filter were fixed with 3.7% formaldehyde in PBS

and stained with 0.1% crystal violet. For each treatment, cells in

10 fields of view were counted in three independent experiments.

Western blot analysis and antibodies
Cells were washed with 1x PBS, lysed in buffer containing 2%

sodium dodecyl sulfate (SDS), 50 mM Tris pH 6.8, 0.1 M dithiothre-

itol (DTT), boiled and used either immediately or frozen at 220uC.

Protein lysates were resolved on denaturing 8–12% SDS-polyacryl-

amide gels and transferred to nitrocellulose membranes (iBlot Gel

transfer stacks, Invitrogen). The following primary antibodies were

used: anti-Bmi1 (Upstate), anti-b-catenin and anti-Nestin (Santa Cruz

Biotechnology); anti-b-tubulin III and anti-GFAP (Sigma); anti-

CNPase (Chemicon); anti-GSK3b (Cell Signaling); anti-Notch2

(Developmental Studies Hybridoma Bank); anti-Sox2 (R&D systems);

anti-CD133 (Miltenyi Biotec); anti-Akt and phospho-Akt (Ser-473)

(Millipore, Billerica MA, USA), anti-p16/p14, anti-Bcl2, anti-Erk and

anti-phospho-Erk (Santa Cruz Biotechnology, Santa Cruz CA, USA),

anti-Actin (Sigma-Aldrich, St. Louis, USA). Decorated proteins were

revealed using horseradish peroxidase-conjugated anti-mouse, anti-

rabbit, anti-rat (New England Biolabs) or anti-goat (Pierce) secondary

antibodies and visualized by the chemoluminescence detection system

SuperSignal West Pico (Thermo Scientific). Protein bands were

quantified with ImageJ software (http://rsb.info.nih.gov/ij/). Results

were normalized to actin levels.

Cell sorting and flow cytometry
Cell DNA content and apoptosis were analyzed by flow

cytometry (CyAn ADP Analyzer, Beckman Coulter) and the

results statistically evaluated with Summit v4.3 software. Cells

were trypsinized, fixed in ice-cold 70% ethanol for 1 h and stained

with 50 mg/ml propidium iodide for FACS analysis. Percent dead

cells was determined from the proportion of cells in sub-G1 phase.

Results are given as mean values from three independent

experiments. For CD133 analysis, isolated cells were labeled with

anti-CD133 antibody (1:10) for 10 min at 4uC, washed with PBS

and sorted (INFLUX Cell Sorter by BD Biosciences).

For BrdU analysis, cells were pulsed with 10 mM bromodeoxy-

uridine for 2 h and processed with the APC-BrdU kit according to

the manufacturer’s instructions (BD Pharmingen). For fluorescent

labeling with GFAP, cells were fixed and permeabilized with the

Cytofix/Cytoperm kit (BD Pharmingen). Permeabilized cells were

incubated with anti-GFAP (1:200) or matching isotype control

antibody for 30 min on ice, washed twice and incubated with the
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corresponding secondary antibody for 30 min on ice and analyzed

by flow cytometry (CyAn ADP Analyzer, Beckman Coulter).

Immunocytochemistry
Cells were grown to 80% confluency as a monolayer as

described above. Cells were then fixed in 4% PFA in PBS for

15 min at room temperature, washed with PBS and incubated

with the primary antibody overnight at 4uC in PBS +1% BSA

+0.1% Triton X100. After thorough washing with PBS, the

secondary antibody was added for 3 h at room temperature. Cells

were imaged by confocal microscopy. All tumor samples analyzed

were stained with hematoxylin-eosin.

Microarray analysis of glioma
BS series are primary tumor tissues obtained from patients

diagnosed with primary CNS tumors classified according to the

WHO grading system. Normal brain tissue used as a template

for microarray was obtained from samples of brain surgery for

non-neoplastic disease. Total RNA from two normal brains, 12

GBM and eight astrocytoma samples was amplified and labeled

using the Affymetrix 2-cycle amplification protocol according to

the manufacturer’s instructions (Affymetrix). Samples were

hybridized to Affymetrix U133v2.0 GeneChips and scanned

using an Affymetrix Gene Chip scanner following the manu-

facturer’s instructions. Expression values were estimated using

the GC-RMA implementation in the Genedata Refiner 4.1

(Genedata, Basel, Switzerland) package. Data-mining and

visualization was performed using the Genedata Analyst 4.1

package. All samples were quantile normalized and median

scaled to correct for minor variation in expression distribution.

All microarray data reported in the manuscript are in

accordance with the MIAME guidelines.

Results

Bmi1 is overexpressed in GBM, oligodendroglioma and
astrocytoma

Bmi1 overexpression has been reported in several different

tumor types including medulloblastoma and neuroblastoma. In an

analysis of Bmi1 mRNA and protein expression in GBM cell lines

and primary brain tumors, all GBM cell lines expressed high Bmi1

levels, with the LN319 line having the highest expression

comparable to the reference line DAOY [9] (Figure 1A and data

not shown). In primary brain tumor samples, Bmi1 expression was

marked in 16/19 (84%) of GBM, 5/7 (71%) of oligodendroglioma

and 3/7 (42%) of astrocytoma. In contrast, fully differentiated

normal brain tissue had no Bmi1 protein (Figure 1B, C).

shRNAs against Bmi1 downregulates GSK3b
To study the role of Bmi1 in GBM, Bmi1 expression was

knocked down using lentiviral-mediated delivery of shRNAs. Bmi1

was efficiently downregulated in the Hs683, U373, U87, and

U343 GBM cell lines (Figures 2A and S1A and data not shown)

using different shRNA sequences (Figure S1B). Since the

Polycomb group gene Bmi1 is involved in the regulation of

development and tumorigenesis, the effect of Bmi1 downregula-

tion in GBM cells was screened by analysis of proteins involved in

key cellular pathways of the cell cycle, development, metabolism,

apoptosis and growth, including Erk, Akt, GSK3b, p16 and p14,

Bcl-2, c-Myc, Nestin and Sox2. In contrast to non-neoplastic cells

in Bmi1 knockout mice [19], Bmi1 downregulation in GBM cells

did not affect Ink4a/Arf protein levels (Figure 2A). Bmi1

downregulation induced cell differentiation associated with

morphological changes and decreased expression of the stem

cell-related proteins Nestin and Sox2, accompanying induction of

an astrocytic fate in U373 glioma cell line, determined by

increased levels of the astrocyte-specific marker GFAP, and

decreased levels of oligodendrocyte-specific marker CNPase

(Figures 2A–D and S2B). In contrast, Bmi1 overexpression

accompanied dedifferentiation as shown by increased Nestin

expression (Figure S1C). Interestingly, GSK3b levels were

markedly reduced (Figures 2A and S1A–B). This raised the

question of whether GSK3b mediates the effects observed on cell

differentiation. To this end, we used the small molecules LiCl and

SB216763 as well as siRNA to interfere with GSK3b activity in

GBM cells.

GSK3b is expressed in GBM
Thirty-two primary tumor tissues obtained from patients

diagnosed with GBM were studied using microarray and western

blot analysis to measure GSK3b mRNA and protein levels.

GSK3b mRNA were higher in GBM and astrocytoma patients

compared with the control (Figures 2E, F and S2) and protein was

found to be expressed in the majority of the tumors analyzed. The

high GSK3b expression in astrocytoma was most probably due to

greater necrosis in the GBM, with increased protein degradation

(Figure S2B).

siRNA- and drug-induced inhibition of GSK3 increases
differentiation markers

The effect of the inhibition of GSK3 on protein levels of

progenitor (Nestin and Sox2) and differentiation (CNPase, GFAP,

and b-tubulin III) markers in GBM cell lines U373, LN319, BS125

and LN18 was analyzed using the drugs LiCl and SB216763 or

siRNAs. b-catenin is targeted for degradation upon phosphoryla-

tion by GSK3b [25]. Blocking GSK3b therefore leads to

accumulation of b-catenin, which was used as a read-out for the

effects of LiCl and SB216763 on GSK3 activity (Figure 3B). After

72 h treatment with LiCl and SB216773, Nestin protein level

decreased in the Nestin-expressing U373, LN319 and LN18 cell

lines (Figures 3A, B), which was confirmed by immunocytochem-

istry (Figure 4B). Nestin and Sox2 were not expressed in the ‘‘ex

vivo’’ BS125 GBM cell line. Sox2 levels were reduced in LN18,

U373 and LN319 upon GSK3 inhibition (Figure 3A, B). The

oligodendrocyte specific marker 29, 39-cyclic nucleotide 39-

phosphodiesterase (CNPase) and the neuronal marker b-tubulin

III increased in BS125, LN18 and LN319, (Figure 3A, B). GSK3

inhibition also increased the protein levels of the astrocytic lineage-

specific marker GFAP in LN319 and BS125 (Figure 4A).

Downregulation of GSK3 activity in LN18 by siRNA reduced

Nestin and Sox2 protein levels (Figure 4C), confirming the

specificity of the inhibitory drug SB216763 in blocking GSK3b.

The effect of the specific GSK3 inhibitor SB216763 was more

pronounced and consistent than the effect of LiCl, which is known

to target other signaling molecules [26]. Thus GSK3 inhibition

specifically decreased the expression of progenitor markers (Nestin

and Sox2) and induced the expression of differentiation markers

(neuronal marker b-tubulin III, oligodendrocyte-specific marker

CNPase and the astrocytic marker GFAP) in a cell line-dependent

manner.

Inhibition of GSK3 depletes GBM cells with a stem cell
signature

The phenotypic switch towards differentiation in GBM cells

following inhibition of GSK3 raises the question of whether GSK3

activity regulates cancer stem cell populations. CD133+ and CD1332

cancer stem cells have been described in GBM [2,3,35–37]. In an
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analysis of eight different tumorigenic GBM cell lines (LN18, LN215,

LN319, U373, LN229, U343, BS125 and Hs683) [34] for the presence

of CD133+ cells, only LN319 contained CD133+ cells, at approx-

imately 12%. To test whether the CD133+ population possessed a

cancer stem cell-like character, the expression levels of stem cell

markers were analyzed in the CD133-enriched population. Nestin,

Notch2 and Bmi1 were highly expressed relative to the CD1332

fraction (Figure 5C). GSK3b and b-catenin protein levels were also

higher in the CD133+ population than in the control (Figure 5C).

Inhibition of GSK3 in cell line LN319 with either LiCl or SB216763

showed a selective effect on the cancer stem cell-like population. LiCl at

10 mM and SB216763 at 20 mM induced a 50–60% depletion of

CD133+ cells (Figure 5A). The effects of GSK3 inhibitory drugs were

found to be specific in that the epidermal growth factor receptor

inhibitor (AEE788) and the c-secretase inhibitor (DAPT) did not

significantly alter the CD133+ population (data not shown). To further

consolidate this observation, we enriched the LN319 CD133+
population by FACS sorting, obtaining a CD133+ cell population of

approximately 80%. This was maintained for several passages and

then subjected to inhibition of GSK3 by LiCl or SB216763, which

depleted the CD133+ fraction (Figure 5B).

It has been argued that GBM cells grown for many passages in

standard medium do not mirror the stem cell compartment within

the original tumor [38]. To examine this, the ‘‘ex vivo’’ cell line

BS287 was analyzed which had been isolated from a fresh tumor

biopsy and directly grown as neurospheres in neurobasal medium

supplemented with bFGF and EGF, thus favoring expansion of

cancer stem cells. Interestingly, the population with a stem cell-like

signature in this cell line was represented by the CD133- and not

by the CD133+ population (Figure 6A–C). Only the CD1332

population expressed elevated levels of Nestin, Sox2 and Bmi1 and

formed neurospheres (Figure 6B, C). Inhibition of GSK3

decreased the stem cell like (CD1332) population (Figure 6D)

and also altered protein levels of stem cell and differentiation

markers, mainly decreased Sox2 levels (Figure S3). Induction of

differentiation impairs the ability of precursor cells to form

Figure 1. Bmi1 was highly expressed in GBM. Bmi1 expression in (A) GBM cell lines and (B) primary brain tumors. (C) Ratio of Bmi1-positive
primary tumors. NB: normal brain. EPEN: Ependymoma.
doi:10.1371/journal.pone.0007443.g001
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Figure 2. GSK3b was downregulated by reduction of Bmi1 expression. (A) GBM cell lines U373 and Hs683 transduced with shRNA against
Bmi1 (sh1061) or with scrambled shRNA (scr). Bmi1 downregulation induced downregulation of the following proteins: p-AKT, Nestin (in U373), Bcl2,
and GSK3b. No effects are evident on the p16/p14ARF, or p-ERK protein levels. (B) Scrambled control or U373 Bmi1-downregulated cells at
subconfluency (sub-con) or confluency (con). Bmi1-downregulated cells show differentiated morphology (arrow: long, branched processes). (C) The
glial fibrillary acidic protein (GFAP) levels in U373scr and U373sh1061 cells measured by flow cytometry. (D) Relative CNPase protein levels in U373scr
and U373sh1061 measured by western blotting, quantified using ImageJ software and normalized to b-actin levels. (E) GSK3b mRNA values from a
series of primary brain tumors (GBM and astrocytoma) and normal brain. (F) GSK3b protein is expressed in primary GBM. *P,0.05; one-way ANOVA
(Newman-Keuls Multiple Comparison Test).
doi:10.1371/journal.pone.0007443.g002
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Figure 3. GSK3 inhibitors specifically induced differentiation in GBM cell lines. Western blot analysis of Nestin, Sox2, CNPase, b -tubulin III
and b -actin (loading control) protein levels after treatment of GBM cell lines with GSK3 inhibitors (10 mM LiCl; 20 mM SB216763). Each cell line
showed a pro-differentiation response to GSK3b inhibitor application. (A) Protein bands quantified with ImageJ software. Protein levels were
normalized to b-actin for each cell line. (B) Corresponding western blots.
doi:10.1371/journal.pone.0007443.g003
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neurospheres. Inhibition of GSK3 significantly reduced the

number and volume of neurospheres in BS287 cells (Figure 6E,

F). The results show that inhibition of GSK3 reduces the cancer

stem cell pool and that CD133 may not be a reliable cancer stem

cell marker.

GSK3 inhibition reduces colony formation and induces
apoptosis in GBM cells

The effects of GSK3 inhibition on cell proliferation and

apoptosis in the GBM cell lines LN18, U373, LN215 and

LN319 were analyzed using colony formation, relative cell number

and cell death as readout. In a colony formation assay, both the

number and size of colonies formed after 14 days of drug

treatment were measured. GSK3 inhibitors significantly reduced

colony formation in all GBM cell lines tested compared with the

untreated control (Figure 7A). The GSK3 inhibitor concentrations

used were in the non-toxic range; cell proliferation and survival of

the human adipose tissue-derived progenitor cells (A111) were not

negatively affected (Figure 7A). GSK3 inhibition by LiCl or

SB216763 induced a slight increase in cell death for GBM cell lines

LN319, LN18, U373 and BS125 after 72 h (Figure 7B). Induction

of cell death was significantly elevated when GSK3 inhibitor LiCl

was combined with the standard GBM therapeutic temozolomide

in the LN18 cell line (Figure 7D). Cell death was dose-dependent

and varied from cell line to cell line. Direct cell counting after

exposure of cells to LiCl or SB216763 for 72 h showed inhibition

of the proliferation of LN18, LN319, U373 and LN215 cells

(Figure 7C). G2-M accumulation was recorded in LN319, LN18,

U373 and G2-M arrest in LN215 (Figure S4). In a migration assay,

LN319 showed a significant reduction in cell migration following

GSK3 inhibition (Figure 7E). These results show that GSK3

strongly reduces colony formation and induces cell death in GBM

cell-lines.

Discussion

Bmi1, a member of the polycomb group proteins, is required for

self-renewal of neural stem cells and is upregulated in several

cancers. It is also known to repress Ink4a/Arf locus inhibiting

progenitor cell proliferation during neural differentiation [39]. In

differentiated cells, Bmi1 levels decrease while Ink4a/Arf protein

levels increase [40]. As the Ink4a/Arf locus is frequently deleted in

brain tumors [41], the role of Bmi1 overexpression in GBM cells

appears to be distinct from its repression of the Ink4a/Arf locus.

For example, downregulation of Bmi1 did not influence Ink4a/Arf

protein levels in tumor cells that retained the Ink4a/Arf locus.

Thus, in GBM cells, Bmi1 targets a different pathway. Screening

of several key proteins controlling cell cycle, development,

metabolism, apoptosis and growth, including Erk, Akt, GSK3b,

p16 and p14, Bcl-2, c-Myc, Nestin and Sox2, showed that

downregulation of Bmi1 reduced GSK3b protein levels and

induced differentiation in cancer cells. In addition, tumor cell

Figure 4. GSK3b downregulation by siRNA treatment induced differentiation. (A) The intensity of GFAP, an astrocyte-specific marker, was
measured by FACS analysis of GBM cell lines treated with 10 mM LiCl for 72 h. (B) Nestin immunostaining of cell lines U373 and LN18 after GSK3b
inhibition by LiCl (Li) or SB216763 (SB) for 72 h. (C) GSK3b siRNA reduced Sox2 and Nestin expression in the LN18 cell line. *P,0.05; one-way ANOVA
(Newman-Keuls Multiple Comparison Test). Scale bar in B is 30 mm.
doi:10.1371/journal.pone.0007443.g004
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proliferation, survival, migration and clonogenicity were markedly

reduced.

Discovered some 25 years ago [42], GSK3 has been considered

only recently as a therapeutic target for cancer [33]. It has been

shown that this enzyme negatively regulates the Wnt, Hedgehog

and Notch pathways, which are aberrantly activated in several

cancers [33,43]. This suggests that GSK3 inhibitors could exert a

therapeutically negative, pro-survival effect on tumor cells.

However, the long-term medical use of the GSK3 inhibitor LiCl

for the treatment of psychiatric disorders did not lead to an

increase in cancer incidence [44], arguing against an oncogenic

effect of GSK3 inhibitors. On the contrary, Cohen et al.

demonstrated that cancer prevalence in psychiatric patients on

long-term LiCl medication was lower than in the general

population [44], suggesting even a protective effect of LiCl. The

results presented here offer a molecular explanation of this

epidemiological observation: administration of LiCl induces

differentiation and inhibits proliferation and, thereby, might

effectively inhibit tumor formation and progression. Furthermore,

the plethora of clinical data on LiCl offer solid information about

potential side-effects and it appears safe to assume that normal

adult stem cells are not negatively affected, even by long-term use

of the drug. The very similar phenotypic and functional alterations

induced by either inhibiting GSK3 or by downregulating Bmi1 in

the present study points to a functional link between Bmi1 and

GSK3. However, further studies are needed to analyze whether

there is a direct interaction between Bmi1 and GSK3. Downreg-

ulating GSK3 specifically decreased the subpopulation of cancer

cells that contained a cancer stem cell-like signature by driving

them into differentiation.

Sox2 protein is widely expressed in the early neural plate and

early neural tube of several species [45]. In the developing

central nervous system, Sox2 expression becomes restricted to

the neuroepithelial cells of the ventricular layer, which continue

to divide and exhibit an immature phenotype. Cells that leave

the ventricular layer lose Sox2 expression [45]. Interestingly,

Sox2 has also been implicated in GBM [46,47] as downregu-

lation of Sox2 reduced cell proliferation and tumorigenicity in

GBM cells. Therefore, Sox2 was proposed as a new GBM

therapeutic target [46]. At present, inhibitors of Sox2 are not

available but the data presented here show that inhibition of

GSK3 strongly downregulates Sox2 in GBM cells. This raises

the possibility that LiCl or more specific GSK3-inhibitory drugs

could be used to decrease the Sox2-dependent tumorigenic

potential of GBM cells.

Two main strategies are currently being exploited to eradicate

the cancer stem cell (CSC) pool: i) chemotherapeutic regimens

that specifically drive CSC into apoptosis and thereby deplete

the CSC reservoir of the tumor, and ii) strategies aiming to drive

CSC into differentiation and thereby increase their susceptibility

to pro-apoptotic treatments [1]. Given the high degree of drug

resistance and the shared cellular and gene expression profiles of

adult and cancer stem cells [48], targeting CSC has proven to be

difficult. However, induction of differentiation remains a

therapeutic strategy for CSC as Piccirillo et al. showed that

bone morphogenetic proteins can induce differentiation of

CD133+ GBM cells, thereby reducing their tumorigenic

potential [49]. However, the use of morphogens bears the risk

of interfering with the tightly regulated adult stem cell niches.

Any strategy to induce differentiation in cancer stem cells must

be carefully assessed for any adverse effects on the adult stem cell

population.

Our results show GSK3 inhibition to be an attractive strategy

for specifically targeting a subpopulation of cancer cells with stem

Figure 5. GSK3b inhibition reduced the CD133+ cell population
of a GBM cell line. (A) LN319 GBM cell line was treated for 72 h with 10
or 20 mM LiCl or with SB216763 at 10 or 20 mM. GSK3b inhibition
reduced the CD133-positive (CD133+) population. (B) LN319 CD133+
cells were enriched to 80% purity by cell sorting. The enriched population
was treated for 72 h with 10 or 20 mM LiCl or with SB216763 at 10 or
20 mM. (C) Western blot analysis of Notch2, Nestin, Bmi1, b-catenin,
GSK3b and b-actin in CD133+ and CD133-negative (CD133-) enriched
populations compared with the control. **P,0.01; ***P,0.001; one-way
ANOVA (Newman-Keuls Multiple Comparison Test).
doi:10.1371/journal.pone.0007443.g005
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cell-like characteristics. Expression of stem cell and differentiation

markers more accurately defined the subpopulation of cells within

GBM cell lines and ex vivo tumor cells than expression of the

CD133 marker. Inactivation of both Bmi1 and GSK3 depleted

precursor cells required for tumor maintenance and progression.

These data add another facet to the many effects of GSK3 as a

regulator of cancer cell identity. Here, GSK3 activation is

identified as a key element in maintaining stem cell-like

characteristics in a subset of cancer cells, providing these cells

with a higher self-renewal capacity. Recently, downregulation of

GSK3 was shown to induce apoptosis in glioma cells and to have

an anti-migratory effect in glioma sphreoids [50,51]. The role of

GSK3 inhibiton on differentiation was not analyzed. Optimal

therapies for cancer aim to spare normal cells with minimal or no

general toxicity while depleting malignant cells. The Wnt pathway

is involved in regulating cell processes as proliferation, apoptosis,

Figure 6. GSK3b inhibition reduced stem cell characteristics in an ‘‘ex vivo’’ GBM cell line. (A) CD133 sorting of the BS287 ‘‘ex vivo’’ GBM
cell line. (B) Growth characteristics of the CD133+ and CD133- populations in BS287. (C) Western blot analysis of Nestin, Sox2, Bmi1 and b-actin in
BS287. The CD133- population showed stem cancer-like characteristics. (D) Cells in the CD133+ population with a more differentiated geno/
phenotype increased after GSK3b inhibition. (E, F) Inhibition of GSK3b led to a reduction in the number and volume of neurospheres in the BS287
‘‘ex vivo’’ cell line.
doi:10.1371/journal.pone.0007443.g006
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differentiation, mobility and stem cell self-renewal and has been

described also as a major regulator of adult neurogenesis in the

hippocampus [52]. In the Wnt/b-catenin pathway GSK3b
mediates b-catenin degradation. Use of GSK3 inhibitors leads to

the accumulation of b-catenin, which then drives cells into

proliferation but this effect was not observed in the present study.

This may be explained by the constitutive activation of several

growth-promoting pathways, such as EGFR and PI3K, commonly

Figure 7. GSK3b inhibition reduced colony formation of GBM cells. (A) A colony formation assay was performed on GBM cell lines treated
with 10 mM LiCl or 20 mM SB216763 for 14 days. (B, C) GBM cell lines treated with LiCl or SB216763 for 72 h. (B) Percent cell death and (C) relative cell
number relative to the initial seeding. (D) Cell death determined by PI staining of the LN18 cell line after treatment with 10 mM LiCl with or without
50 mg/ml temozolomide (TMZ) for 72 h. *P,0.05, for the combination of LiCl and TMZ compared with each drug alone. (E) GSK3b inhibition
significantly reduced migration of the LN319 cell line. (B, C and E) Treated samples were compared to the corresponding control: *P,0.05; **P,0.01;
***P,0.001; one-way ANOVA (Newman-Keuls Multiple Comparison Test).
doi:10.1371/journal.pone.0007443.g007
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found in GBM. This could lead to maximal Wnt signaling target

activation masking additional activation. Conversely, differentia-

tion- and apoptosis-inducing programs, which are low in cancer

cells, could be influenced by GSK3 inhibition and are, therefore,

directly detectable. On the opposite in normal system as in the

A111 cells GSK3 inhibition lead to an increased cell proliferation

in accordance with the previously described results in neural

progenitor cells [53].

shRNA against Bmi1 downregulated not only GSK3 but also

Bcl2, Nestin, Sox2 and not p16 and p14 (Figure 2A). The

microarray data showed higher levels of GSK3 expression in brain

tumors than in normal brain tissue, and protein was found to be

expressed in the majority of the tumors analyzed indicating a role

for GSK3 in GBM (Figure 2). GSK3 can thus be regarded as an

important regulator of tumor cell identity in GBM.

In conclusion, we propose GSK3 inhibitory drugs, e.g. LiCl, as

possible first- and/or second-line treatments complementing

standard cancer therapy.

The additive effect of combining the GSK3 inhibitor LiCl and

the standard GBM therapeutic temozolomide suggests possible

sensitization due to the induction of differentiation by interference

with GSK3 activity. In addition, the vast clinical experience of this

drug with psychiatric patients indicates safe application and the

lower cancer prevalence in LiCl-treated patients than in the

general population suggests a protective effect of the drug [44].

Clinically, LiCl could be tested in patients receiving standard

treatments in an additional therapeutic arm, the clinical hypothesis

being that long-term LiCl therapy in stabilized GBM patients may

delay tumor recurrence from the residual cancer stem cell pool by

driving cancer stem cells into differentiation and apoptosis.

Supporting Information

Figure S1 Bmi1 down-regulation reduces GSK3b protein levels.

(A) GBM cell line U87 is transduced with shRNA against Bmi1

(sh1061) or with scrambled shRNA (scr) (B) Bmi1 down regulation

lead to GSK3b reduction in Hs683 using a different shRNA

sequence. (C) Bmi1 down-regulation in U87 glioma cell line

decreased nestin protein levels, whereas Bmi1 over-expression

increased Nestin protein expression.

Found at: doi:10.1371/journal.pone.0007443.s001 (2.17 MB TIF)

Figure S2 GSK3b is expressed in primary brain tumors. (A)

GSK3b protein expression in a series of primary GBM (1–32). (B)

Photomicrograph of the immunohistochemical study showing

extensive necrotic areas in GBM compared to Astrocytoma

(Hematoxylin-Eosin staining). Arrows point to necrotic areas in

GBM.

Found at: doi:10.1371/journal.pone.0007443.s002 (3.18 MB TIF)

Figure S3 GSK3 inhibition induces differentiation of the BS287

‘‘ex vivo’’ cell line. Nestin, Sox2, b-catenin, CNPase, b-tubulin III

and b-actin protein expression upon GSK3 inhibition (with LiCl

and SB216763 for either 24 or 72 hours) on the BS287 ‘‘ex vivo’’

cell line.

Found at: doi:10.1371/journal.pone.0007443.s003 (1.82 MB TIF)

Figure S4 Cell cycle analysis in GBM cell lines treated with

LiCl. The GBM cell lines LN319, LN18, U373 and LN215 were

treated with 10 or 20 mM LiCl for 24 hours. Percentage of the

cells in G1, S and G2-M phase of the cell cycle were evaluated by

FACS analysis.

Found at: doi:10.1371/journal.pone.0007443.s004 (2.11 MB TIF)
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