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Abstract Conclusion 

Introduction 

Results (1) 
Neuroblastoma is a devastating pediatric cancer and 

most patients older than 18 months present with multi-

organ metastatic disease.  High grade or recurrent 

disease is refractory to treatment with chemotherapy and 

almost uniformly fatal. Glycogen Synthase Kinase-3 

(GSK-3) was recently identified as a potential therapeutic 

target in human neuroblastoma. Because GSK-3b has 

been shown to be a positive regulator of NF-kB-mediated 

survival and chemoresistance in cancer cells, we 

hypothesize that the inhibition of GSK-3 may have 

therapeutic effects in neuroblastoma. Using chemically 

distinct GSK-3 inhibitors (AR-A014418, TDZD8 and 9-

ING-41), we found that pharmacological inhibition of 

GSK-3 led to a decrease in viability of neuroblastoma 

cells.  However, our novel and proprietary GSK-3 

inhibitor 9-ING-41 was identified as being most potent. 

We observed that inhibition of GSK-3 results in 

decreased expression of the antiapoptotic molecule XIAP 

(NF-kB target gene) and a subsequent increase in 

neuroblastoma cell apoptosis. Our xenograft in vivo 

studies show that the combination of irinotecan (CPT-11) 

and 9-ING-41 leads to regression of subcutaneous SK-

N-DZ neuroblastoma xenograft tumors at doses of 

irinotecan that are below the maximum tolerated dose 

whereas irinotecan or 9-ING-41 monotherapy had little or 

only modest effects on tumor growth. Our results suggest 

that the inhibition of GSK-3 is a promising new approach 

for the treatment of neuroblastoma, especially when 

combined with irinotecan cytotoxic therapy 

Results (2) 

Hypothesis: inhibition of GSK-3b, a positive regulator of NF-kB activity, overcomes 

NF-kB-mediated chemoresistance and thereby potentiates the effect of 

conventional chemodrugs in human neuroblastoma. 

Neuroblastoma is a devastating pediatric cancer and most patients older than 

18 months present with multi-organ metastatic disease.  High grade or 

recurrent disease is refractory to treatment with chemotherapy and almost 

uniformly fatal. Thus, neuroblastoma represents a significant unmet medical 

need and the identification of new therapeutic agents is urgently needed for 

the effective treatment of neuroblastoma to improve clinical outcomes. 

NF-kB activation is known to promote human cancer progression, metastasis, 

and chemoresistance (1, 2). Glycogen Synthase Kinase-3b (GSK-3b), a 

serine/threonine protein kinase, is an essential positive regulator of NF-kB 

transcriptional activity (3). Our previous studies showed that GSK-3b is a 

positive regulator of NF-kB-mediated survival and chemoresistance of cancer 

cells (4-9). It has been shown that treatment of neuroblastoma cells with 

doxorubicin or etoposide resulted in enhanced NF-kB transcriptional activity 

in a dose-dependent manner (10). Our previous studies have demonstrated 

that the inhibition of GSK-3 decreases cancer cell survival via suppression of 

the NF-kB-mediated expression of Bcl-2 and XIAP  (4-9).  Moreover, we have 

demonstrated that AR-A014418, a toolbox GSK-3 inhibitor, enhanced the 

anticancer effect of docetaxel and synergistically decreased the viability of 

renal cancer cells (8). Similarly, AR-A014418 was shown to sensitize 

pancreatic cancer cells to gemcitabine (11).  Finally, a number of published 

studies identified GSK-3b as a new therapeutic target in human 

neuroblastoma (12-13).  
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Our results suggest that the inhibition of GSK-3 is a 

promising new therapeutic approach to enhance 

chemosensitivity of neuroblastoma to the antitumor effect 

of irinotecan.   

Figure 1. Inhibition of GSK-3 suppreses XIAP 

expression and leads to apoptosis in 

neuroblastoma cells.  Upper panel, 

immunohistochemical analysis of GSK-3b 

expression and localization in human 

neuroblastoma tumors obtained from cancer 

patients (Case #1 and Case #2) and in xenograft 

tumors established from SK-N-BE(2) and SK-N-DZ 

neuroblastoma cell lines. Lower panel, 

neuroblastoma cells were treated with 5 mM AR-

A014418, 5 mM TDZD-8 and 0.1 mM (lower left 

panel) or 1 mM (lower right panel) of 9-ING-41 for 48 

hours. 30 mg of proteins (whole cell lysate) was 

separated by SDS-PAGE, transferred to PVDF 

membrane, and immunoblotted as indicated. 

Figure 2. Treatment with CPT-11+9ING41 leads to an increased apoptosis 

and a partial regression of SK-N-DZ xenograft tumors. SK-N-DZ 

neuroblastoma cells were inoculated subcutaneously (subQ) to 20 nude mice 

(1 tumor per mouse). Tumors were size matched and mice were randomized 

into 4 treatment groups: control (DMSO; n=5 mice), CPT-11 (5 mg/kg, n=5 

mice), 9ING41 (70 mg/kg, n=5 mice) and Irinotecan+9ING41 (n=5 mice). A, 

Vehicle (20 mL DMSO) or drugs were injected as shown by arrows. Points, 

mean tumor volume; bars, SE. B, Mice were sacrificed when tumors grew to 

more than 5 times the original starting volume and the weight of resected 

tumors was measured. Columns, mean  tumor weight; bars, SE. C, 

Representative pictures of GBM PDX subQ tumors from each group of 

animals. D, The percentage of apoptotic cells was determined by TUNEL 

staining. Columns, mean; bars, SE. E, Representative pictures of TUNEL 

staining of SK-N-DZ neuroblastoma xenograft tumors treated as indicated. 
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Using immunohistochemical staining, we found that GSK-3b is highly expressed in human 

neuroblastomas and in subcutaneous xenograft tumors established from SK-N-BE(2) and 

SK-N-DZ neuroblastoma cell lines (Fig. 1, upper panel). Using a cell viability assay, we found 

that the GI50 of our novel GSK-3 inhibitor 9-ING-41 (100 nM) for inhibiting the growth of SK-N-

DZ and SK-N-BE(2) neuroblastoma cells is more than 80 times lower than the GI50 of other 

GSK-3 inhibitors, namely AR-A014418 and TDZD-8. Our results show that 9-ING-41 inhibits 

GSK-3, as shown by downregulation of phospho-glycogen synthase (phospho-GS) 

expression, leading to a decreased expression of NF-kB target XIAP (anti-apoptotic protein), 

leading to significant apoptosis in neuroblastoma cells in vitro as shown by PARP cleavage, 

an apoptosis marker (Fig. 1, lower panel).  

Human neuroblastoma cell lines SK-N-DZ and SK-N-BE(2) 

were purchased from ATCC. GSK-3 inhibitors AR-A014418 and 

TDZD-8 and other chemical reagents have been purchased 

from Sigma-Aldrich. GSK-3b, GAPDH, PARP, phospho- 

glycogen synthase, Ser641 antibodies were purchased from 

Cell Signaling Technologies. XIAP antibody has been 

purchased from BD Biosciences. Cell viability was examined 

using a colorimetric MTS assay, the CellTiter 96 assay 

(Promega), according to the manufacturer’s protocol. IHC 

staining was performed with Dako Envision+/HRP kit according 

to the recommended manufacturer procedure.  
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