

Developmental

Therapeutics Institute

Aberrant nuclear expression of GSK-3^β in human head and neck carcinoma

1127

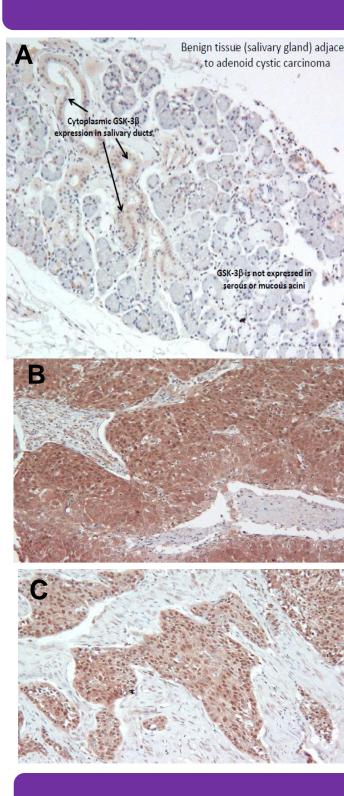
Maria Matsangou^{1,3} Andrey Ugolkov^{1,2,5} Tim J. Taxter ^{1,4} Andrew P. Mazar ^{1,2,5} and Francis J Giles^{1,3} ¹Center for Developmental Therapeutics, ²Department of Pharmacology, ³Department of Medicine Division of Hematology-Oncology, ⁴Department of Pathology, Feinberg School of Medicine, and ⁵Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL

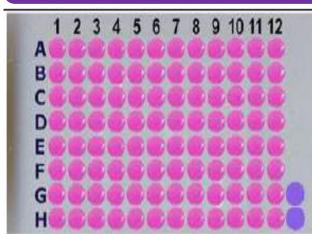
ABSTRACT

Background. Recurrent/metastatic head and neck squamous cell carcinoma (SCCHN) and salivary gland malignancies are difficult to treat with limited standard of care options at the present time. Glycogen Synthase Kinase-3beta (GSK-3β), a serine/threonine protein kinase, has been implicated as a potential therapeutic target in human cancer. Our in vivo studies demonstrated that our novel GSK-3 inhibitors significantly potentiated the effects of conventional chemotherapy in patient-derived xenograft models of glioblastoma and breast cancer leading to regression of tumors. In order to develop a rationale to test our novel GSK-3 inhibitors in head and neck (H&N) malignancies, we evaluated the expression pattern of GSK-3 β in human H&N benign tissue and malignant tumors.

Methods. We used immunohistochemical staining of H&N tumor tissue Microarray (TMA), 48 total cases (20 benign tissues, 28 malignant), to study the expression pattern of GSK-3 β . GSK-3 β nuclear accumulation was defined as positive staining of more than 50% of cancer cell nuclei throughout the tumor regardless of cytoplasmic staining.

Results. There were total of 28 malignant H&N samples (22 non-salivary and 6 salivary origin). Of the 22 non-salivary malignant H&N samples (15 SCCHN, 2 nasopharyngeal and 5 other histology), 15 (68%) were found to have aberrant nuclear accumulation of GSK-3β. Amongst SCCHN, 73% (11 of 15 samples) had aberrant nuclear accumulation of GSK-3β. In contrast, none (0%) of the 11 benign non-salivary H&N tissue showed detectable expression GSK-3β. Of interest, 60% of salivary adenoid cystic carcinoma (ACC) specimens and 44% of benign salivary gland tissue showed GSK-3β expression.

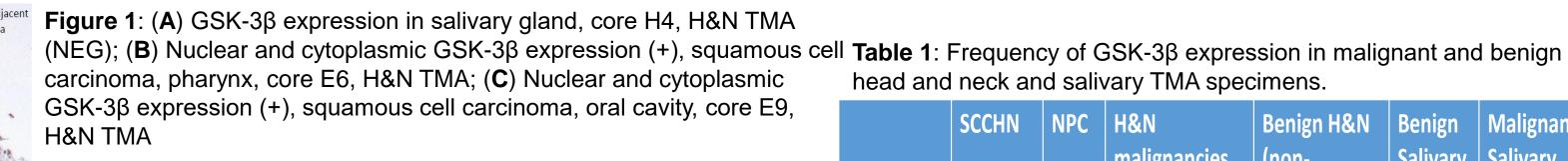

Conclusions. Our results demonstrate that there is aberrant nuclear expression of GSK-3β in SCCHN. This finding supports the clinical exploration of GSK-3^β inhibitors in SCCHN and further study of GSK-3ß as a potential prognostic and predictive biomarker for risk of recurrent disease and chemo- or radio-resistance in patients with advanced SCCHN. The role of aberrant nuclear expression of GSK- 3β in salivary gland malignancies merits further study.


OBJECTIVES

- Develop a rationale to test our novel GSK-3 inhibitors in H&N malignancies.
- Evaluated the expression pattern of GSK-3beta in human H&N benign tissue and malignant tumors.

METHODS 1

Commercial TMA, obtained from BioChain, Newark, CA (cat. Z7020051), contained **48 surgical resection cases of inflammatory, benign and** malignant tumor tissues of the neck, oro- and naso-pharynx, larynx and salivary glands. They were fixed in 10% neutral buffered formalin for 24 hours and processed using identical standard operating procedures (SOPs).



Immunohistochemical staining:

citric buffer in microwave for 10 min. protocol.

- Immunohistochemical reactions were developed with diamino-benzidine as the chromogenic peroxidase substrate, and slide was counterstained with hematoxylin. -We defined GSK-3β nuclear accumulation as positive staining of >50% of cancer cell nuclei throughout the tumor regardless of cytoplasmic staining.

RESULTS

-													
		1	2	3	4	5	6	7	8	9	10	11	12
	A	Benign, inflammation	Salivary gland, inflammation	Polvo	Polyp	Polyp	Polyp	Hemangioma	Hemangioma	Neurofibroma	Neurofibroma	Schwannoma	Schwannoma
	В	Neg	Cyt	Neg	Cyt	Cyt	Cyt	Neg	Cyt	Cyt	Cyt	Cyt	Cyt
	C	Pleomorphic adenoma	Pleomorphic adenoma	Pleomorphic adenoma	Pleomorphic adenoma	Pleomorphic adenoma	Pleomorphic adenoma	Pleomorphic adenoma	Pleomorphic adenoma	SCC	SCC	SCC	SCC
124 14 1600	D	Cyt	Nuc	Nuc	Cyt	Cyt	Nuc	Nuc	Cyt	Nuc	Cyt	Nuc	Nuc
	E	SCC	SCC	SCC	SCC	SCC	SCC	SCC	SCC	SCC	Nasopharyngea I carcinoma	SCC	Mucoepidermo d carcinoma
	F	Nuc	Neg	Nuc	Nuc	NA	Nuc	Cyt	Nuc	Nuc	Cyt	Nuc	Cyt
	G	ACC	ACC	ACC	ACC	ACC	Rhabdomyosarcoma		Non-Hodgkin B cell lymphoma	Diffuse large 8-	adenocarcinom	Metastatic nasopharyngea I carcinoma	Metastatic SCC
	H	Nuc	Nuc	Nuc	Neg	Cyt	Neg	Nuc	Nuc	Cyt	Cyt	Cyt	Nuc
													_

	SCCHN	NPC	H&N malignancies other than SCC	Benign H&N (non- salivary)	Benign Salivary gland tissue	Malignant Salivary gland
Number of specimens N=48	15	2	5	11	9	6 (5ACC,1MEC)
GSK-3β Nuclear POS (N)	11	2	2	0	4	3 (ACC)
GSK-3β Nuclear POS (%)	All H&N n SCC: 73%	nalignaı	ncies: 68%	0%	44%	60% ACC

Figure 2: **Tissue Array Diagram**: Tissue Type and GSK-3β expression GSK-3β nuclear expression was defined as positive staining of more than 50% of cancer cell nuclei throughout the tumor regardless of cytoplasmic staining.

METHODS 2

TMA contained 96 cores: 48 total cases (2 The tissue cores/case), e.g. cores A1, B1 represent samples from same case, taken from different parts of the specimen. •22 malignant H&N samples (15 SCCHN, 2 nasopharyngeal and 5 other histology)

- •11 Benign H&N samples
- •9 Benign Salivary gland samples
- •6 Malignant salivary gland samples
- Performed on paraffin section of the TMA.
- -The paraffin section of TMA was deparaffinized, and antigen retrieval was carried out in
- The section was incubated in 1% hydrogen peroxidase for 10 minutes to quench endogenous tissue peroxidase and then incubated with the anti-GSK-3β antibody (Cell Signaling, Danvers, MA) overnight at +4C. The slide was stained using a standard EnVision+ System-HRP kit (DAKO, Carpinteria, CA) according to the manufacture's

Our results demonstrate that there is aberrant nuclear expression of GSK-3β in SCCHN. This finding supports the clinical exploration of GSK-3 β inhibitors in SCCHN and further study of GSK-3 β as a potential prognostic and predictive biomarker for risk of recurrent and chemo- or radio-resistance in patients disease with advanced SCCHN. The role of aberrant nuclear expression of GSK-3β in salivary gland malignancies merits further study.

REFERENCES

- cancer. Cancer Letters (2016), doi: 10.1016/j.canlet.2016.07.006.
- Res 2005;65:2076-2081
- leukemia B cells. Blood 2007;110:735-742.
- carcinoma. Br J Cancer 2009;101:2005-2014.
- therapeutic target in human bladder cancer. Clin Cancer Res 2010;16:5124-5132.

NORTHWESTERN UNIVERSITY SCHOOL OF MEDICINE

SCCHN= Squamous cell carcinoma of Head and Neck, NPC=Nasopharyngeal carcinoma, ACC= Adenoid cystic carcinoma, MEC= mucoepidermoid carcinoma

CONCLUSIONS

Ugolkov A, Gaisina I. et. al., GSK-3 inhibition overcomes chemoresistance in human breast

2. Ugolkov A., Oleksii Dubrovskyi O. et al., Targeting GSK-3: a novel approach to enhance glioblastoma chemosensitivity. AACR; Cancer Res 2015;75(15 Suppl): Abstract nr 2699. 3. Ougolkov A, Fernandez-Zapico M, et al., Glycogen synthase kinase-3beta participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer

4. Ougolkov A, Bone N, et al.,. Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor kappaB target genes and induction of apoptosis in chronic lymphocytic

5. Bilim V, Ougolkov A, et al. Glycogen synthase kinase-3: a new therapeutic target in renal cell

6. Naito S, Bilim V, et al. Glycogen synthase kinase-3beta: a prognostic marker and a potential

Gall Posters

Printed by